
The Annals of Applied Probability
2021, Vol. 31, No. 1, 247–283
https://doi.org/10.1214/20-AAP1589
© Institute of Mathematical Statistics, 2021

CRAMÉR-TYPE MODERATE DEVIATION THEOREMS FOR NONNORMAL
APPROXIMATION

BY QI-MAN SHAO1,2, MENGCHEN ZHANG3 AND ZHUO-SONG ZHANG4,5

1Department of Statistics and Data Science, Southern University of Science and Technology
2Department of Statistics, Chinese University of Hong Kong, qmshao@sta.cuhk.edu.hk

3Department of Mathematics, Hong Kong University of Science and Technology, mzhangag@connect.ust.hk
4Department of Statistics, Chinese University of Hong Kong

5Department of Statistics and Applied Probability, National University of Singapore, zszhang.stat@gmail.com

A Cramér-type moderate deviation theorem quantifies the relative error
of the tail probability approximation. It provides a criterion whether the lim-
iting tail probability can be used to estimate the tail probability under study.
Chen, Fang and Shao (2013) obtained a general Cramér-type moderate result
using Stein’s method when the limiting was a normal distribution. In this pa-
per, Cramér-type moderate deviation theorems are established for nonnormal
approximation under a general Stein identity, which is satisfied via the ex-
changeable pair approach and Stein’s coupling. In particular, a Cramér-type
moderate deviation theorem is obtained for the general Curie–Weiss model
and the imitative monomer-dimer mean-field model.

1. Introduction. Consider a sequence of random variables Wn. One often needs to cal-
culate the tail probability of Wn such as P(Wn ≥ xn). Since the exact distribution of Wn is
hardly known, it is common to use the limiting distribution, that is, assuming that Wn con-
verges to Y in distribution, P(Y ≥ xn) is used to estimate P(Wn ≥ xn). The Cramér-type
moderate deviation seeks the largest possible an so that

(1.1)
P(Wn ≥ x)

P(Y ≥ x)
= 1 + error → 1

holds for 0 ≤ x ≤ an. This quantifies the relative error of the distribution approximation
and provides a criterion whether the limiting tail probability can be used to estimate the
tail probability. When Y is the normal random variable and Wn is the standardized sum of
the independent random variables, the Cramér-type moderate deviation is well understood.
In particular, for independent and identically distributed random variables X1, . . . ,Xn with
EXi = 0,EX2

i = 1 and Eet0
√|X1| < ∞, t0 > 0, it holds that

(1.2)
P(Wn ≥ x)

1 − �(x)
= 1 + O(1)

(
1 + x3)

/
√

n

for 0 ≤ x ≤ n1/6, where Wn = (X1 + · · · + Xn)/
√

n. The finite-moment-generating function
of |X1|1/2 is necessary, and both the range 0 ≤ x ≤ n1/6 and the order of the error term
(1 + x3)/

√
n are optimal. We refer to Linnik [20] and Petrov [23], page 251, for details.

Considering general dependent random variables whose dependence is defined in terms of
a Stein identity, Chen, Fang and Shao [10] obtained a general Cramér-type moderate devi-
ation result for normal approximation using Stein’s method. Stein’s method, introduced by
Stein [28], is a completely different approach to distribution approximation than the classical
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Fourier transform. It works not only for independent random variables but also for dependent
random variables. It can also provide accuracy of the distribution approximation. Extensive
applications of Stein’s method to obtain Berry–Esseen-type bounds can be found in, for ex-
ample, Diaconis [16], Stein [29], Barbour [3], Goldstein and Reinert [19], Chen and Shao
[12, 13], Chatterjee [6], Nourdin and Peccati [21] and Shao and Zhang [26]. We refer to
Chen, Goldstein and Shao [11], Nourdin and Peccati [22] and Chatterjee [7] for compre-
hensive coverage of the method’s fundamentals and applications. In addition to the normal
approximation, Chatterjee and Shao [9] obtained a general nonnormal approximation via the
exchangeable pair approach and the corresponding Berry–Esseen-type bounds. We also refer
to Shao and Zhang [25] for a more general result.

The main purpose of this paper is to obtain a Cramér-type moderate deviation theorem for
nonnormal approximation. Our main tool is based on Stein’s method, combined with some
techniques in Chatterjee and Shao [9] and Chen, Fang and Shao [10]. The paper is organized
as follows. Section 2 presents a Cramér-type moderate deviation theorem under a general
Stein identity setting, which recovers the result of Chen, Fang and Shao [10] as a special
case. In Section 3, the result is applied to two examples: the general Curie–Weiss model and
imitative monomer-dimer models. The proofs of the main results in Section 2 are given in
Sections 4 and the proofs of theorems in Section 3 are postponed to Section 5.

2. Main results. Let W := Wn be the random variable of interest. Following the setting
in Chatterjee and Shao [9] and Chen, Fang and Shao [10], we assume that there exists a
constant δ, a nonnegative random function K̂(t), a function g and a random variable R(W)

such that

(2.1) E
(
f (W)g(W)

) = E
(∫

|t |≤δ
f ′(W + t)K̂(t) dt

)
+ E

(
f (W)R(W)

)
for all absolutely continuous functions f for which the expectation of either side exists. Let

(2.2) K̂1 =
∫
|t |≤δ

K̂(t) dt

and

(2.3) G(y) =
∫ y

0
g(t) dt.

Let Y be a random variable with the probability density function

(2.4) p(y) = c1e
−G(y), y ∈ R,

where c1 is a normalizing constant.
In this section, we present a Cramér-type moderate deviation theorem for general distri-

bution approximation under Stein’s identity in general and under an exchangeable pair and
Stein’s couplings in particular.

Before presenting the main theorem, we first give some of the conditions of g.
Assume that:

(A1) The function g is nondecreasing and g(0) = 0.
(A2) For y 	= 0, yg(y) > 0.
(A3) There exists a positive constant c2 such that for x, y ∈R,

(2.5)
∣∣g(x + y)

∣∣ ≤ c2
(∣∣g(x)

∣∣ + ∣∣g(y)
∣∣ + 1

)
.

(A4) There exists c3 ≥ 1 such that for y ∈ R,

(2.6)
∣∣g′(y)

∣∣ ≤ c3

(
1 + |g(y)|

1 + |y|
)
.



MODERATE DEVIATION FOR NONNORMAL APPROXIMATION 249

A large class of functions satisfy conditions (A1)–(A4). A typical example is g(y) =
sgn(y)|y|p,p ≥ 1.

We are now ready to present our main theorem.

THEOREM 2.1. Let W be a random variable of interest satisfying (2.1). Assume that
conditions (A1)–(A4) are satisfied. Additionally, assume that there exist τ1 > 0, τ2 > 0, δ1 >

0 and δ2 ≥ 0 such that ∣∣E(K̂1 | W) − 1
∣∣ ≤ δ1

(∣∣g(W)
∣∣τ1 + 1

)
,(2.7) ∣∣R(W)

∣∣ ≤ δ2
(∣∣g(W)

∣∣τ2 + 1
)
.(2.8)

In addition, there exist constants d0 ≥ 1, d1 > 0 and 0 ≤ α < 1 such that

E(K̂1 | W) ≤ d0,(2.9)

δ
∣∣g(W)

∣∣ ≤ d1,(2.10) ∣∣R(W)
∣∣ ≤ α

(∣∣g(W)
∣∣ + 1

)
.(2.11)

Then, we have

(2.12)

P(W > z)

P(Y > z)
= 1 + O(1)

(
δ
(
1 + zg2(z)

)
+ δ1

(
1 + zgτ1+1(z)

) + δ2
(
1 + zgτ2(z)

))
for z ≥ 0 satisfying δzg2(z)+δ1zg

τ1+1(z)+δ2zg
τ2(z) ≤ 1, where O(1) is bounded by a finite

constant depending only on d0, d1, c1, c2, c3, τ1, τ2, α and max(g(1), |g(−1)|).
The condition (2.1) is called a general Stein identity, see Chen, Goldstein and Shao [11],

Chapter 2. We use the exchangeable pair approach and Stein’s coupling to construct K̂(t)

and R(W) as follows.
Let (W,W ′) be an exchangeable pair, that is, (W,W ′) has the same joint distribution as

(W ′,W). Let � = W − W ′. Assume that

(2.13) E(� | W) = λ
(
g(W) − R(W)

)
,

where 0 < λ < 1. Assume that |�| ≤ δ for some constant δ > 0. It is known (see, e.g., Chat-
terjee and Shao [9]) that (2.1) is satisfied with

K̂(t) = 1

2λ
�

(
I (−� ≤ t ≤ 0) − I (0 < t ≤ �)

)
.

Clearly, we have

K̂1 = 1

2λ
�2.

For exchangeable pairs, we have the following corollary.

COROLLARY 2.1. For (W,W ′) an exchangeable pair satisfying (2.13), assume that
g(W), K̂1 and R(W) satisfy the conditions (A1)–(A4) and (2.7)–(2.11) stated in Theo-
rem 2.1; then, (2.12) holds.

Stein’s coupling introduced by Chen and Röllin [14] is another way to construct the general
Stein identity.

A triple (W,W ′, T ) is called a g-Stein’s coupling if there is a function g such that

(2.14) E
(
Tf

(
W ′) − Tf (W)

) = E
(
f (W)g(W)

)
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for all absolutely continuous function f , such that the expectations on both sides exist. As-
sume that |W ′ − W | ≤ δ. Then, by Chen and Röllin [14], we have

E
(
f (W)g(W)

) = E
(∫

|t |≤δ
f ′(W + t)K̂(t) dt

)
,(2.15)

where

K̂(t) = T
(
I
(
0 ≤ t ≤ W ′ − W

) − I
(
W ′ − W ≤ t < 0

))
.(2.16)

It is easy to see that K̂1 = T (W ′ − W).
The following corollary presents a moderate deviation result for Stein’s coupling.

COROLLARY 2.2. Let (W,W ′, T ) be a g-Stein’s coupling satisfying (2.14) and (2.15)
and let K̂ be defined as in (2.16) and assume that K̂(t) ≥ 0 for |t | ≤ δ. Let g(W) and
K̂1 := T (W ′ − W) satisfy the conditions (A1)–(A4) and (2.7), (2.9) and (2.10) stated in
Theorem 2.1, then (2.12) holds with δ2 = 0.

REMARK 2.1. For s ≥ 0, let

(2.17) ζ(w, s) =

⎧⎪⎪⎨
⎪⎪⎩

eG(w)−G(w−s) w > s,

eG(w) 0 ≤ w ≤ s,

1 w < 0.

Condition (2.7) can be replaced by

(2.18)
∣∣E(K̂1 | W) − 1

∣∣ ≤ K2 + δ1
(∣∣g(W)

∣∣τ1 + 1
)
,

where K2 ≥ 0 is a random variable satisfying

(2.19) EK2ζ(W, s) ≤ δ1
(
1 + gτ1(s)

)
Eζ(W, s).

REMARK 2.2. Condition (2.11) may not be satisfied when |W | is large in some ap-
plications. Following the proof of Theorem 2.1, when (2.11) is replaced by the following
condition, there exist 0 ≤ α < 1, d2 ≥ 0, d3 > 0 and κ > 0 such that

(2.20)
∣∣R(W)

∣∣ ≤ α
(∣∣g(W)

∣∣ + 1
) + d2I

(|W | > κ
)
,

and

(2.21) d2P
(|W | > κ

) ≤ d3e
−2s0d

−1
1 δ−1

,

where d1 is bounded in (2.10) and s0 = max{s : δsg2(s) ≤ 1}, Theorem 2.1 and Corollar-
ies 2.1 and 2.2 remain valid with O(1) bounded by a finite constant depending only on
d0, d1, d2, d3, c1, c2, c3, τ1, τ2, α and max(g(1), |g(−1)|).

3. Applications. In this section, we apply the main results to the general Curie–Weiss
model at the critical temperature and the imitative monomer-dimer model.

3.1. General Curie–Weiss model at the critical temperature. Let ξ be a random variable
with probability measure ρ which is symmetric on R. Assume that

Eξ2 = 1, E exp
(
βξ2/2

)
< ∞ for β ≥ 0.(3.1)

The general Curie–Weiss model CW(ρ) at inverse temperature β is defined as the array of
spin random variables X = (X1,X2, . . . ,Xn) with joint distribution

dPn(x) = Z−1
n exp

(
β

2n
(x1 + x2 + · · · + xn)

2
) n∏

i=1

dρ(xi)(3.2)
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for x = (x1, x2, . . . , xn) ∈ R
n where

Zn =
∫

exp
(

β

2n
(x1 + x2 + · · · + xn)

2
) n∏

i=1

dρ(xi)

is the normalizing constant.
The magnetization m(x) is defined by

m(x) = 1

n

n∑
i=1

xi.

Following the setting of Chatterjee and Dey [8], we assume that the measure ρ satisfies the
following conditions:

(B1) ρ has compact support, that is, ρ([−L,L]) = 1 for some L < ∞.
(B2) Let

h(s) := s2

2
− log

∫
exp(sx) dρ(x).(3.3)

The equation h′(s) = 0 has a unique root at s = 0.
(B3) Let k ≥ 2 be such that h(i)(0) = 0 for 0 ≤ i ≤ 2k − 1 and h(2k)(0) > 0.

Specially, for the simple Curie–Weiss model, where ρ = 1
2δ1 + 1

2δ−1 and δ is the Dirac mea-
sure, conditions (B1)–(B3) are satisfied with L = 1 and k = 2. For 0 < β < 1, n1/2m(X) con-
verges weakly to a Gaussian distribution, see Ellis and Newman [17]. Also, Chen, Fang and
Shao [10] obtained the Cramér-type moderate deviation for this normal approximation. When
β = 1, Simon and Griffiths [27] proved that the law of n1/4m(X) converges to W(4,12) as
n → ∞, with the probability density function

fY (y) =
√

2

31/4(1/4)
e− y4

12 .(3.4)

Chatterjee and Shao [9] showed that the Berry–Esseen bound is of order O(n−1/2).
For the rest of this subsection, we consider only the case where β = 1. Assume that con-

ditions (B1)–(B3) are satisfied. Let W = n
1

2k m(X). Ellis and Newman [17] showed that W

converges weakly to a distribution with density

(3.5) p(y) = c1 exp
(−h(2k)(0)y2k/(2k)!),

where c1 is a normalizing constant. For the concentration inequality, Chatterjee and Dey [8]
used Stein’s method to prove that for any n ≥ 1 and t ≥ 0,

P
(|W | ≥ t

) ≤ 2e−cρ t2k

,

where cρ > 0 is a constant depending only on ρ. Moreover, Shao and Zhang [26] proved the
Berry–Esseen bound:

sup
z∈R

∣∣P(W ≤ z) − P(Y ≤ z)
∣∣ ≤ Cn− 1

2k ,(3.6)

where Y ∼ p(y) as defined in (3.5) and C > 0 is a constant.
In this subsection, we provide the Cramér-type moderate deviation for W .

THEOREM 3.1. Let W be defined as above. If β = 1, we have

P(W > z)

P(Y > z)
= 1 + O(1)n−1/k(1 + z2k+2)

,

uniformly in z ∈ (0, n
1

k(2k+2) ).
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COROLLARY 3.1. For the simple Curie–Weiss model, in which case ρ = 1
2δ1 + 1

2δ−1
and δ is the Dirac measure. Then,

P(W > z)

P(Y > z)
= 1 + O(1)n−1/2(

1 + z6)
,

uniformly in z ∈ (0, n1/12), where Y ∼ W(4,12).

After we finished this paper, we learnt that Can and Pham [4] proved Corollary 3.1 by a
completely different approach.

REMARK 3.1. Comparing to Shao and Zhang [26], Theorem 3.2(ii), we assume the ad-
ditional condition that ρ is a symmetric measure. Following the proofs of Theorem 3.1 and
Shao and Zhang [26], Theorem 3.2, we have (3.6) can be improved to

sup
z∈R

∣∣P(W ≤ z) − P(Y ≤ z)
∣∣ ≤ Cn−1/k.

3.2. The imitative monomer-dimer mean-field model. In this subsection, we consider the
imitative monomer-dimer model and give the moderate deviation result. A pure monomer-
dimer model can be used to study the properties of diatomic oxygen molecules deposited on
tungsten or liquid mixtures with molecules of unequal size, see [18, 24] for example. Chang
[5] studied the attractive component of the van der Waals potential, while Alberici, Contucci,
Fedele and Mingione [1] and Alberici, Contucci and Mingione [2] considered the asymptotic
properties.

Chen [15] recently obtained the Berry–Esseen bound by using Stein’s method. In this
subsection, we apply our main theorem to obtain the moderate deviation result.

For n ≥ 1, let G = (V ,E) be a complete graph with vertex set V = {1, . . . , n} and edge
set E = {uv = {u, v} : u, v ∈ V,u < v}. A dimer configuration on the graph G is a set D

of pairwise nonincident edges satisfying the following rule: if uv ∈ D, then for all w 	= v,
uw /∈ D. Given a dimer configuration D, the set of monomers M(D) is the collection of
dimer-free vertices. Let D denote the set of all dimer configurations. Denote the number of
elements by #(·). Then, we have

2#(D) + #
(
M(D)

) = n.

We now introduce the imitative monomer-dimer model. The Hamiltonian of the model
with an imitation coefficient J ≥ 0 and an external field h ∈ R is given by

−T (D) = n
(
Jm(D)2 + bm(D)

)
for all D ∈ D, where m(D) = #(M(D))/n is called the monomer density and the parameter
b is given by

b = logn

2
+ h − J.

The associated Gibbs measure is defined as

p(D) = e−T (D)∑
D∈D e−T (D)

.

Let

H(x) = −Jx2 − 1

2

(
1 − g

(
τ(x)

) + log
(
1 − g

(
τ(x)

)))
,(3.7)
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where

g(x) = 1

2

(√
e4x + 4e2x − e2x)

, τ (x) = (2x − 1)J + h.

Alberici, Contucci and Mingione [2] showed that the imitative monomer-dimer model ex-
hibits the following three phases. Let

Jc = 1

4(3 − 2
√

2)
, hc = 1

2
log(2

√
2 − 2) − 1

4
.

There exists a function γ : (Jc,∞) → R with γ (Jc) = hc such that if (J,h) /∈ , where
 := {(J, γ (J )) : J > Jc}, then the function H(x) has a unique maximizer m0 that satisfies
m0 = g(τ(m0)). Moreover, if (J,h) /∈  ∪ {(Jc, hc)}, then H ′′(m0) < 0. If (J,h) = (Jc, hc),
then m0 = mc := 2 − √

2 and

H ′(mc) = H ′′(mc) = H(3)(mc) = 0,

but

H(4)(mc) < 0.

If (J,h) ∈ , then H(s) has two distinct maximizers; therefore, in this case, m(D) may
not converge. Hence, we consider only the cases when (J,h) /∈ .

Alberici, Contucci and Mingione [2] showed that when (J,h) /∈  ∪ {(Jc, hc)},
n1/2(m(D) − m0) converges to a normal distribution with zero mean and variance λ0 =
−(H ′′(m0))

−1 − (2J )−1. However, when (J,h) = (Jc, hc), n1/4(m(D) − m0) converges to
Y in distribution, whose p.d.f. is given by

(3.8) p(y) = c1e
−λcy

4/24

with λc = −H(4)(mc) > 0 and c1 is a normalizing constant. Chen [15] obtained the Berry–
Esseen bound using Stein’s method.

We use the following notation. Let � = {0,1}n. For each σ = (σ1, . . . , σn) ∈ �, define a
Hamiltonian

−T (σ) = n
(
Jm(σ)2 + bm(σ)

)
,

where m(σ) = n−1(σ1 + · · · + σn) is the magnetization of the configuration σ . Denote by
A(σ ) the set of all sites i ∈ V such that σi = 1. Also, let D(σ) denote the total number
of dimer configurations D ∈ D with M(D) = A(σ ). Therefore, the Gibbs measure can be
written as

p(σ) = D(σ) exp(−T (σ))∑
τ∈� D(τ) exp(−T (τ))

.

The following result gives a Cramér-type moderate deviation for the magnetization.

THEOREM 3.2. If (J,h) /∈  ∪ {Jc,hc}, then, for 0 ≤ z ≤ n1/6,

(3.9)
P(n1/2(m(σ) − m0) > z)

P(Z0 > z)
= 1 + O(1)n−1/2(

1 + z3)
,

where Z0 follows normal distribution with zero mean and variance λ0 = −(H ′′(m0))
−1 −

(2J )−1. If (J,h) = (Jc, hc), then for 0 ≤ z ≤ n1/20,

(3.10)
P(n1/4(m(σ) − mc) > z)

P(Y > z)
= 1 + O(1)n−1/4(

1 + z5)
,

where Y is a random variable with the probability density function given in (3.8).
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4. Proofs of main results. In this section, we give the proofs of the main theorems.
In what follows, we use C or C1,C2, . . . to denote a finite constant depending only on
c1, c2, c3, d0, d1, τ1, τ2,μ1 and α, where μ1 = max(g(1), |g(−1)|) + 1, and C might be dif-
ferent in different places.

4.1. Proof of Theorem 2.1. Let Y be a random variable with a probability density func-
tion given in (2.4) and F(z) be the distribution function of Y . We start with a preliminary
lemma on the properties of (1 − F(w))/p(w) and F(w)/p(w), whose proof is postponed to
Section 4.2.

LEMMA 4.1. Assume that conditions (A1)–(A4) are satisfied. Then, we have

(4.1)
1

max(1, c3)(1 + g(w))
≤ 1 − F(w)

p(w)
≤ min

{
1

g(w)
,1/c1

}
for w > 0

and

(4.2)
F(w)

p(w)
≤ min

{
1

|g(w)| ,1/c1

}
for w < 0.

Let fz be the solution to Stein’s equation

(4.3) f ′(w) − f (w)g(w) = I (w ≤ z) − F(z).

As shown in Chatterjee and Shao [9], the solution fz can be written as

(4.4) fz(w) =

⎧⎪⎪⎨
⎪⎪⎩

F(w)(1 − F(z))

p(w)
w ≤ z;

F(z)(1 − F(w))

p(w)
w > z.

Let

(4.5)

I1 = E
(∫

|t |≤δ

∣∣fz(W + t)g(W + t) − fz(W)g(W)
∣∣K̂(t) dt

)
,

I2 = E
(∣∣(E(K̂1 | W) − 1

)
fz(W)g(W)

∣∣),
I3 = E

(∣∣(E(K̂1 | W) − 1
)(

P(Y > z) − I (W > z + δ)
)∣∣),

I4 = E
(
fz(W)

∣∣R(W)
∣∣).

The following propositions provide estimates of I1, I2, I3 and I4, whose proofs are given in
Section 4.4.

PROPOSITION 4.1. If δ ≤ 1, then

(4.6) I1 ≤ Cδ.

Assume that z ≥ 0,max(δ, δ1, δ2) ≤ 1 and δzg2(z) + δ1zg
τ1+1(z) + δ2zg

τ2(z) ≤ 1. Then,
we have

(4.7) I1 ≤ Cδ
(
1 + zg2(z)

)(
1 − F(z)

)
.

PROPOSITION 4.2. We have

I2 + I3 ≤ Cδ1, I4 ≤ Cδ2.(4.8)

For z > 0,max(δ, δ1, δ2) ≤ 1 and δzg2(z) + δ1zg
τ1+1(z) + δ2zg

τ2(z) ≤ 1, we have

I2 + I3 ≤ Cδ1
(
1 + zgτ1+1(z)

)(
1 − F(z)

)
,(4.9)

I4 ≤ Cδ2
(
1 + zgτ2(z)

)(
1 − F(z)

)
.(4.10)
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We are ready to give the proof of Theorem 2.1.

PROOF OF THEOREM 2.1. From (2.1), we have

(4.11)

E
(
fz(W)g(W) − fz(W)R(W)

)
= E

(∫
|t |≤δ

f ′
z(W + t)K̂(t) dt

)

= E
(∫

|t |≤δ

(
fz(W + t)g(W + t)

+ P(Y > z) − I (W + t > z)
)
K̂(t) dt

)

≤ E
(∫

|t |≤δ

(
fz(W + t)g(W + t) − fz(W)g(W)

)
K̂(t) dt

)

+ E
(
K̂1fz(W)g(W)

)
+ E

(
K̂1

(
P(Y > z) − I (W > z + δ)

))
≤ E

(∫
|t |≤δ

∣∣fz(W + t)g(W + t) − fz(W)g(W)
∣∣K̂(t) dt

)

+ E
(
K̂1fz(W)g(W)

)
+ E

(∣∣E(K̂1 | W) − 1
∣∣∣∣P(Y > z) − I (W > z + δ)

∣∣)
+ P(Y > z) − P(W > z + δ).

Rearranging (4.11) leads to

(4.12) P(W > z + δ) − P(Y > z) ≤ I1 + I2 + I3 + I4,

where I1, I2, I3 and I4 are defined as in (4.5).
First, we use (4.12) and Propositions 4.1 and 4.2 to prove the Berry–Esseen bound∣∣P(W > z) − P(Y > z)

∣∣ ≤ C(δ + δ1 + δ2),(4.13)

where C ≥ 1. By (4.12), (4.6) and (4.8), for δ ≤ 1, we have

P(W > z + δ) − P(Y > z) ≤ C(δ + δ1 + δ2).(4.14)

Together with

P(Y > z) − P(Y > z + δ) ≤ c1

∫ z+δ

z
e−G(w) dw ≤ c1δ,

we have

P(W > z) − P(Y > z) ≤ C(δ + δ1 + δ2).

Similarly, we have

P(W > z) − P(Y > z) ≥ −C(δ + δ1 + δ2).

This proves the inequality (4.13) for δ ≤ 1. For δ > 1, (4.13) is trivial because C ≥ 1.
Next, we move to prove (2.12). Let z0 > 1 be a constant such that

min
{
z0g

2(z0), z0g
τ1+1(z0), z0g

τ2(z0), z0
} ≥ 1.
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For 0 ≤ z ≤ z0, (2.12) follows from (4.13) because

P(W > z) − P(Y > z)

P(Y > z)
≤ C(δ + δ1 + δ2)

1 − F(z0)
,(4.15)

where C is a constant.
For z > z0, and thus z > 1, we can assume max{δ, δ1, δ2} ≤ 1; otherwise, it would contra-

dict the condition

δzg2(z) + δ1zg
τ1+1(z) + δ2zg

τ2(z) ≤ 1.(4.16)

In this case, it follows that

(4.17) δ ≤ 1, δg2(z) ≤ δzg2(z) ≤ 1,

provided that (4.16) holds.
By (4.12) and Propositions 4.1 and 4.2,

(4.18)

P(W > z + δ) − (
1 − F(z)

)
≤ I1 + I2 + I3 + I4

≤ C
(
1 − F(z)

)(
δ
(
1 + zg2(z)

) + δ1
(
1 + zgτ1+1(z)

) + δ2
(
1 + zgτ2(z)

))
.

By replacing z with z − δ, and noting that g is nondecreasing, we can rewrite (4.18) as

(4.19)
P(W > z) − (

1 − F(z − δ)
)

≤ C
(
1 − F(z − δ)

)(
δ
(
1 + zg2(z)

) + δ1
(
1 + zgτ1+1(z)

) + δ2
(
1 + zgτ2(z)

))
.

As p(y) is decreasing in [z − δ, z], we have

F(z) − F(z − δ) =
∫ z

z−δ
p(t) dt

≤ δp(z − δ) ≤ eδg(z)δp(z).

By (4.17), it follows that δg(z) ≤ (1/2)δ(1 + g2(z)) ≤ 1. By (4.1), we also have

p(z) ≤ max(1, c3)
(
1 + g(z)

)(
1 − F(z)

);
then,

F(z) − F(z − δ) ≤ Cδ
(
1 + g(z)

)(
1 − F(z)

)
for some constant C. Recall that δ(1 + g(z)) ≤ 2; then,

1 − F(z − δ) ≤ C
(
1 − F(z)

)
.

Together with (4.19), we get

P(W > z) − (
1 − F(z)

)
≤ P(W > z) − (

1 − F(z − δ)
) + F(z) − F(z − δ)

≤ C
(
1 − F(z − δ)

)(
δ
(
1 + zg2(z)

) + δ1
(
1 + zgτ1+1(z)

) + δ2
(
1 + zgτ2(z)

))
+ Cδ

(
1 + g(z)

)(
1 − F(z)

)
≤ C

(
1 − F(z)

)(
δ
(
1 + zg2(z)

) + δ1
(
1 + zgτ1+1(z)

) + δ2
(
1 + zgτ2(z)

))
.

Similarly, we can prove the lower bound as follows:

P(W > z) − (
1 − F(z)

)
≥ −C

(
1 − F(z)

)(
δ
(
1 + zg2(z)

) + δ1
(
1 + zgτ1+1(z)

) + δ2
(
1 + zgτ2(z)

))
.

This completes the proof of Theorem 2.1. �
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4.2. Proof of Lemma 4.1. For w ≥ 0, by the monotonicity of g(·), we have

1 − F(w) =
∫ ∞
w

p(t) dt

= c1

∫ ∞
w

e−G(t) dt

= c1

∫ ∞
w

1

g(t)
e−G(t) dG(t)

≤ c1

g(w)
e−G(w)

= p(w)

g(w)
.

Let H(w) = 1 − F(w) − p(w)/c1; then,

H ′(w) = p(w)
(
g(w)/c1 − 1

)
.

Note that g(w)/c1 = 1 has at most one solution in (0,+∞) and that g(0) = 0; then, H(w)

takes the maximum at either 0 or +∞. We have

H(w) ≤ max
{
H(0), lim

w→∞H(w)
}

≤ 0.

This proves the upper bound of (4.1). The inequality (4.2) can be obtained similarly.
To finish the proof, we need to prove that for w ≥ 0,

(4.20)
p(w)

1 + g(w)
≤ max(1, c3)

(
1 − F(w)

)
.

Let

(4.21) ζ(w) = 1

1 + g(w)
e−G(w).

As g′(w) ≤ c3(1 + g(w)), we have

−ζ ′(w) = g(w)

1 + g(w)
e−G(w) + g′(w)

(1 + g(w))2 e−G(w) ≤ max(1, c3)e
−G(w).

As g(w) is nondecreasing and g(w) > 0 for w > 0, then G(w) = ∫ w
0 g(t) dt → ∞ as

w → ∞. Therefore, limw→∞ p(w) = 0. Taking the integration on both sides yields

ζ(w) = −
∫ ∞
w

ζ ′(t) dt ≤ max(1, c3)

∫ ∞
w

e−G(t) dt,

which leads to (4.20). This completes the proof.

4.3. Preliminary lemmas. To prove Propositions 4.1 and 4.2, we first present some pre-
liminary lemmas. Throughout this subsection, we assume that conditions (A1)–(A4) are sat-
isfied.

LEMMA 4.2. Assume that 0 < δ ≤ 1. Then, we have

(4.22) sup
|t |≤δ

∣∣g(w + t)
∣∣ ≤ c2

(∣∣g(w)
∣∣ + μ1

)
,

where μ1 = max(g(1), |g(−1)|) + 1.
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Also, for w > s > 0 and any positive number a > 1, there exists b(a) depending on a, c2
and c3, such that

(4.23) g(w) − g(w − s) ≤ 1

a
g(w) + b(a)

(
g(s) + 1

)
,

where one can choose

b(a) = (
(2c2) + · · · + (2c2)

m(a)) + 1/a,

and m(a) = [log2(ac3 + 1)] + 1.

PROOF OF LEMMA 4.2. The inequality (4.22) can be derived immediately from (2.5).
Meanwhile, (4.23) remains to be shown. For a > 1, consider two cases.

Case 1. If s < w ≤ (ac3 + 1)s, denote m := m(a) = [log2(ac3 + 1)] + 1. As g is nonde-
creasing and by (2.5), we have

g(w) ≤ g
(
2ms

) ≤ 2c2g
(
2m−1s

) + c2.

By induction, we have

(4.24)
g(w) ≤ (2c2)

mg(s) + c2
(
1 + (2c2) + · · · + (2c2)

m−1)
≤ b(a)

(
g(s) + 1

)
,

where b(a) = 2c2(1 + (2c2) + · · · + (2c2)
m(a)−1) + 1/a.

Case 2. If w > (ac3 + 1)s, by (2.6), we have

(4.25)

g(w) − g(w − s) =
∫ s

0
g′(w − t) dt

≤ c3

∫ s

0

1 + g(w − t)

1 + (w − t)
dt

≤ 1

a

(
g(w) + 1

)
.

By (4.24) and (4.25), this completes the proof. �

LEMMA 4.3. For w ≥ 0 and any a > 0, we have

(4.26) g′(w) ≤ 1

a
g(w) + c3

(
g(ac3) + 1

) + 1/a.

PROOF OF LEMMA 4.3. Recall that (2.6) states that for w ≥ 0,

g′(w) ≤ c3

(
1 + g(w)

1 + w

)
.

Fix a > 0. When w > ac3, we have

g′(w) ≤ 1

a

(
g(w) + 1

)
.

When w ≤ ac3, by the monotonicity property of g, we have

g′(w) ≤ c3
(
g(ac3) + 1

)
.

This completes the proof. �
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For s > 0, define

(4.27) f (w, s) =

⎧⎪⎪⎨
⎪⎪⎩

eG(w)−G(w−s) − 1 w > s,

eG(w) − 1 0 ≤ w ≤ s,

0 w ≤ 0.

We next consider a ratio property of f (w, s). It is easy to see that f (w, s) is absolutely
continuous with respect to both w and s, and the partial derivatives are

(4.28)

∂

∂w
f (w, s) = eG(w)−G(w−s)(g(w) − g(w − s)

)
I (w > s)

+ eG(w)g(w)I (0 ≤ w ≤ s)

and

(4.29)
∂

∂s
f (w, s) = eG(w)−G(w−s)g(w − s)I (0 < s ≤ w).

LEMMA 4.4. Let f (w) := f (w, s) be defined as in (4.27). For 0 ≤ δ ≤ 1 and δ|g(w)| ≤
d1, we have

(4.30) sup
|u|≤δ

∣∣∣∣f (w + u) + 1

f (w) + 1

∣∣∣∣I (w + u ≥ 0) ≤ μ2,

where μ2 = exp(c2(d1 + μ1) + μ1). Moreover, we have

sup
|u|≤δ

∣∣f ′′(w + u)
∣∣ ≤ μ3

(
g2(w) + 1

)(
f (w) + 1

)
,(4.31)

where μ3 = 2c2
2(c3 + 1)(μ2

1 + 1)μ2.

PROOF. Recall that μ1 = max(g(1), |g(−1)|) + 1. When w + u ≥ 0 and w ≥ 0, as g is
nondecreasing, we have

sup
|u|≤δ

∣∣∣∣f (w + u) + 1

f (w) + 1

∣∣∣∣ ≤ eG(w+δ)−G(w)

≤ eδ|g(w+δ)| ≤ ec2(d1+μ1),

where in the last inequality we use (4.22). When w + u ≥ 0, w < 0 and |u| ≤ δ, we have
0 ≤ w + u < δ ≤ 1; hence, by the nondecreasing property of g,

sup
|u|≤δ

∣∣∣∣f (w + u) + 1

f (w) + 1

∣∣∣∣ ≤ sup
|u|≤δ

eG(w+u) ≤ eG(δ) ≤ eμ1 .

This proves (4.30).
For f ′′(w), by (4.28),

f ′′(w) = eG(w)−G(w−s)(g(w) − g(w − s)
)2

I (w > s)

+ eG(w)−G(w−s)(g′(w) − g′(w − s)
)
I (w > s)

+ eG(w)g2(w)I (0 ≤ w ≤ s)

+ eG(w)g′(w)I (0 ≤ w ≤ s).

As g is nondecreasing, we have g′(w − s) ≥ 0; thus, g′(w) − g′(w − s) ≤ g′(w). For w > s,
0 ≤ g(w) − g(w − s) ≤ g(w). Therefore,

f ′′(w) ≤ (
g′(w) + g2(w)

)(
f (w) + 1

)
I (w ≥ 0).
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By (2.6), for c3 > 1, we have

g2(w) + g′(w) ≤ g2(w) + c3
(
1 + g(w)

) ≤ 2(c3 + 1)
(
g2(w) + 1

)
.

Hence,

f ′′(w) ≤ 2(c3 + 1)
(
g2(w) + 1

)(
f (w) + 1

)
.

By (4.22) and (4.30), we have

sup
|u|≤δ

∣∣f ′′(w + u)
∣∣ ≤ μ3

(
g2(w) + 1

)(
f (w) + 1

)
,

where μ3 = 2c2
2(c3 + 1)(μ2

1 + 1)μ2. This completes the proof of Lemma 4.4. �

Let W be the random variable defined as in Theorem 2.1. For 0 ≤ τ ≤ max(2, τ1 + 1, τ2)

and s > 0, Lemmas 4.5 and 4.6 give the properties of E|g(W)|τ , E|g(W)|τ eG(W)I (0 ≤
W ≤ s) and E|g(W)|τ eG(W)−G(W−s)I (W > s), which play a key role in the proofs of Propo-
sitions 4.1 and 4.2.

LEMMA 4.5. Suppose that conditions (A1)–(A4) and (2.9)–(2.11) are satisfied with
δ ≤ 1. For 0 ≤ τ ≤ max(2, τ1 + 1, τ2), we have

E
∣∣g(W)

∣∣τ ≤ C.(4.32)

Moreover, for s > 0, we have

(4.33) E
(
eG(W)−G(W−s)gτ (W)I (W > s)

) ≤ C
(
1 + gτ (s)

)(
E

(
f (W, s)

) + 1
)
,

and

(4.34) E
(
eG(W)gτ (W)I (0 ≤ W ≤ s)

) ≤ C
(
1 + gτ (s)

)(
E

(
f (W, s)

) + 1
)
.

PROOF OF LEMMA 4.5. In this proof, we always assume that δ ≤ 1.
We first prove (4.32). Without loss of generality, we consider only the case where τ ≥ 2.

As δ|g(W)| ≤ d1, we have E|g(W)|τ < ∞. To bound E|g(W)|τ , without loss of generality,
we consider only Egτ (W)I (W ≥ 0). Let g+(w) := g(w)I (w ≥ 0). As g(0) = 0 and g is
differentiable, we find that g+(w) is absolutely continuous. By (2.1), we have

E
{
gτ (W)I (W ≥ 0)

} = E
{
g(W) · gτ−1+ (W)

}
(4.35)

:= Q1 + Q2,

where

Q1 = (τ − 1)E
∫
|u|≤δ

gτ−2+ (W + u)g′(W + u)I (W + u ≥ 0)K̂(u) du,

Q2 = ER(W)gτ−1+ (W).

The following inequality is well known: for any a > 0, x, y ≥ 0 and τ > 1

xτ−1y ≤ τ − 1

aτ
xτ + aτ−1

τ
yτ .(4.36)

For the first term Q1, by (2.6), we have

g′(w + u) ≤ c3
(
1 + ∣∣g(w + u)

∣∣).
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Thus, for w + u ≥ 0,

sup
|u|≤δ

gτ−2+ (w + u)g′(w + u)

≤ c3 sup
|u|≤δ

(
gτ−1+ (w + u) + gτ−2+ (w + u)

)

≤ 2c3 sup
|u|≤δ

(
gτ−1+ (w + u) + 1

)

≤ 1 − α

8 × (2c2)τ d0(τ − 1)
sup
|u|≤δ

∣∣g(w + u)
∣∣τ + D1,0,

where we use (4.36) with

a = 8 × (2c2)
τ+1d0(τ − 1)

1 − α
and x = ∣∣g+(w + u)

∣∣
in the last inequality. Here and in the sequel, D1,0, D2,0, etcetera denote constants depending
on c2, c3, d0, d1,μ1, α and τ . By (4.22), we have

sup
|u|≤δ

∣∣g(w + u)
∣∣τ ≤ (2c2)

τ (∣∣g(w)
∣∣τ + μτ

1
)
.

Then, by (2.9), we have

Q1 ≤ 1 − α

8
E

∣∣g(W)
∣∣τ + D2,0.(4.37)

For Q2, by (2.11) and using (4.36) again, we have

Q2 ≤ αEgτ+(W) + 1 − α

4
Egτ+(W) +

(
4

1 − α

)τ−1
.(4.38)

Hence, by (4.35), (4.37) and (4.38), we have

Egτ+(W) ≤ 1

6
E

∣∣g(W)
∣∣τ + D3,0.

Similarly, we have

Egτ−(W) ≤ 1

6
E

∣∣g(W)
∣∣τ + D4,0.

Combining the two foregoing inequalities yields (4.32).
As to (4.33) and (4.34), we first consider the case where τ ≥ 2. Write f (w) := f (w, s).

By (2.1) and (4.28), we have

(4.39)
E

(
g(W)τf (W)

) = Eg(W)
{
g(W)τ−1f (W)

}
= M1 + M2 + M3 + M4,

where

(4.40)

M1 = E
∫
|u|≤δ

gτ (W + u)eG(W+u)I (0 ≤ W + u ≤ s)K̂(u) du,

M2 = E
∫
|u|≤δ

gτ−1(W + u)
(
g(W + u) − g(W + u − s)

)
× eG(W+u)−G(W+u−s)I (W + u > s)K̂(u) du,

M3 = (τ − 1)E
∫
|u|≤δ

gτ−2(W + u)g′(W + u)f (W + u)K̂(u) du,

M4 = ER(W)gτ−1(W)f (W).
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We next give the bounds of M1,M2,M3 and M4. For M1, by (2.9) and (4.30) and noting that
g is nondecreasing, we have

(4.41)
M1 ≤ d0g

τ (s)E sup
|u|≤δ

(
f (W + u) + 1

)
I (0 ≤ W + u ≤ s)

≤ d0μ2g
τ (s)E

(
f (W) + 1

)
.

To bound M2, we first give the bound of g(w + u) and g(w + u) − g(w + u − s) for |u| ≤ δ.
By (4.22), we have

sup
|u|≤δ

∣∣g(w + u)
∣∣ ≤ c2

(∣∣g(w)
∣∣ + μ1

)
.(4.42)

Furthermore, by (4.23) with a = 2τ+2d0μ2c
τ
2/(1 − α), for w + u > s, there exists a constant

D1 depending on c2, c3, d0, d1,μ1, α and τ such that

(4.43)

sup
|u|≤δ

∣∣g(w + u) − g(w + u − s)
∣∣

≤ 1 − α

2τ+3d0μ2c
τ
2

sup
|u|≤δ

∣∣g(w + u)
∣∣ + D1

(
g(s) + 1

)
.

By (4.36), (4.42) and (4.43), we have

sup
|u|≤δ

∣∣g(W + u)τ−1(
g(W + u) − g(W + u − s)

)∣∣

≤
(

1 − α

2τ+3d0μ2c
τ
2

sup
|u|≤δ

∣∣g(W + u)
∣∣ + D1

(
g(s) + 1

))
sup
|u|≤δ

∣∣g(W + u)
∣∣τ−1

≤ 1 − α

2τ+2d0μ2c
τ
2

sup
|u|≤δ

∣∣g(W + u)
∣∣τ + 2τ+3d0μ2c

τ
2

τ(1 − α)
× Dτ

1
(
1 + g(s)

)τ

≤ 1 − α

4d0μ2

(∣∣g(W)
∣∣τ + μτ

1
) + 2τ+3d0μ2c

τ
2

τ(1 − α)
× Dτ

1
(
1 + g(s)

)τ

≤ 1 − α

4d0μ2

∣∣g(W)
∣∣τ + D2

(
1 + gτ (s)

)
,

where

D2 = 22τ+3d0μ2c
τ
2

τ(1 − α)
× Dτ

1 + (1 − α)μτ
1

4d0μ2
.

By (2.9) and (4.30), we have

(4.44)
M2 ≤ 1 − α

4
E

∣∣g(W)
∣∣τ (

f (W) + 1
)

+ d0μ2D2
(
1 + gτ (s)

)
E

(
f (W) + 1

)
.

For M3, by Lemma 4.3 and similar to (4.44), we have

(4.45)
M3 ≤ 1 − α

4
E

∣∣g(W)
∣∣τ (

f (W) + 1
)

+ D3
(
1 + gτ (s)

)
E

(
f (W) + 1

)
,

where D3 is a finite constant depending on c2, c3, d0, d1,μ1, α and τ .
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For M4, by (2.11) and (4.36), we have

(4.46)

M4 ≤ αE
∣∣g(W)

∣∣τ f (W) + αE
∣∣g(W)

∣∣τ−1
f (W)

≤
(
α + 1 − α

4

)
E

∣∣g(W)
∣∣τ f (W) +

(
4α

1 − α

)τ−1
Ef (W).

By (4.39), (4.41) and (4.44)–(4.46), we have

E
∣∣g(W)

∣∣τ f (W) ≤
(
α + 3(1 − α)

4

)
E

∣∣g(W)
∣∣τ f (W)

+ (
D4 + E

∣∣g(W)
∣∣τ )(

1 + gτ (s)
)
E

(
f (W) + 1

)
,

where D4 is a constant depending on c2, c3, d0, d1,μ1, α and τ . Rearranging the inequality
gives

E
∣∣g(W)

∣∣τ f (W) ≤ 4(D4 + E|g(W)|τ )
1 − α

(
1 + gτ (s)

)
E

(
f (W) + 1

)
.(4.47)

Combining (4.47) and (4.32), we have

E
∣∣g(W)

∣∣τ (
f (W) + 1

) ≤ D5
(
1 + gτ (s)

)
E

(
f (W) + 1

)
,(4.48)

where D5 is a constant depending on c2, c3, d0, d1,μ1, α and τ . This proves (4.33) and (4.34)
for τ ≥ 2.

For 0 ≤ τ < 2 with E|g(W)|2 < ∞. By the Cauchy inequality, we have(
1 + g2−τ (s)

)∣∣g(w)
∣∣τ ≤ 1 + g2(s) + 2g2(w),

and noting that for s > 0 and g(s) > 0,

(4.49)

∣∣g(w)
∣∣τ ≤ 1 + g2(s) + 2g2(w)

1 + g2−τ (s)

≤ gτ (s) + 1 + 2g2(w)

1 + g2−τ (s)
.

By (4.48) with τ = 2, we have

E
∣∣g(W)

∣∣2(
f (W) + 1

) ≤ D6
(
1 + g2(s)

)
E

(
f (W) + 1

)
,(4.50)

where D6 is a constant depending on c2, c3, d0, d1,μ1, α and τ .
Thus, for 0 ≤ τ < 2, by (4.50) and (4.49), we have

E
∣∣g(W)

∣∣τ (
f (W) + 1

) ≤ gτ (s)E
(
f (W) + 1

)
+ E(f (W) + 1) + 2Eg2(W)(f (W) + 1)

1 + g2−τ (s)

≤ D7
(
1 + gτ (s)

)
E

(
f (W) + 1

)
,

where D7 is a constant depending on c2, c3, d0, d1,μ1, α and τ . This completes the proof
together with (4.48). �

LEMMA 4.6. Let f (w, s) be defined as in (4.27). Let 0 < δ ≤ 1 and s > 0. Suppose that
the conditions in Theorem 2.1 are satisfied. Then, we have

E
(
f (W, s) + 1

)
≤ C(1 + s) exp

{
C

(
δ
(
1 + sg2(s)

) + δ1
(
1 + sgτ1+1(s)

)
(4.51)

+ δ2
(
1 + sgτ2(s)

))}
.
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REMARK 4.1. Following the proof of Lemma 4.6, if we assume that the condition (2.7)
is replaced by (2.18) and (2.19), then the result of Lemma 4.6 still holds.

PROOF OF LEMMA 4.6. Let h(s) = Ef (W, s) and let f (w) := f (w, s). By (4.28) and
(4.29), for s > 0, we have

h′(s) = E
(
eG(W)−G(W−s)g(W − s)I (W > s)

)
= E

(
f (W)g(W)

) + E
(
g(W)I (W > 0)

) − E
(
f ′(W)

)
.

We first show that h′(s) can be bounded by a function of h(s). We then solve the differ-
ential inequality to obtain the bound of h(s), using an idea similar to that in the proof of
Lemma 4.5.

By (2.1), we have

(4.52) E
(
f (W)g(W)

) − E
(
f ′(W)

) = T1 + T2 + T3,

where

T1 = E
(∫

|u|≤δ

(
f ′(W + u) − f ′(W)

)
K̂(u) du

)
,

T2 = Ef ′(W)
(
E(K̂1 | W) − 1

)
,

T3 = E
(
f (W)R(W)

)
.

We next give the bounds of T1, T2 and T3.

(i) The bound of T1. By (4.31), we have

sup
|u|≤δ

∣∣f ′(w + u) − f ′(w)
∣∣

≤ δ sup
|u|≤δ

∣∣f ′′(w + u)
∣∣

≤ δμ3
(
g2(w) + 1

)(
f (w) + 1

)
.

By (2.9) and Lemma 4.5, we have

(4.53)
|T1| ≤ δd0μ3E

(
g2(W) + 1

)(
f (W) + 1

)
≤ D8δ

(
1 + g2(s)

)
E

(
f (W) + 1

)
,

where D8 is a constant depending on c2, c3, d0, d1,μ1 and α.
(ii) The bound of T2. By (2.7) and Lemma 4.5, we have

(4.54)

|T2| ≤ δ1E
(∣∣g(W)

∣∣(∣∣g(W)
∣∣τ1 + 1

)(
f (W) + 1

))
≤ 2δ1E

(∣∣g(W)
∣∣τ1+1 + 1

)(
f (W) + 1

)
≤ D9δ1

(
1 + gτ1+1(s)

)
E

(
f (W) + 1

)
,

where D9 is a constant depending on c2, c3, d0, d1,μ1, τ1 and α.
(iii) The bound of T3. By (2.8) and Lemma 4.5, we have

(4.55)
T3 ≤ δ2E

(∣∣g(W)
∣∣τ2 + 1

)
f (W)

≤ D10δ2
(
1 + gτ2(s)

)
E

(
f (W) + 1

)
,

where D10 is a constant depending on c2, c3, d0, d1,μ1, τ2 and α.
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By (4.32), we have

Eg(W)I (W > 0) ≤ D11,(4.56)

where D11 is a constant depending on c2, c3, d0, d1,μ1 and α. By (4.52)–(4.56), we have

h′(s) ≤ D11 + D12
(
δ
(
1 + g2(s)

) + δ1
(
1 + gτ1+1(s)

) + δ2
(
1 + gτ2(s)

))
× E

(
f (W) + 1

)
,

where D12 = max(D8,D9,D10). Therefore,

h′(s) ≤ D12
(
δ
(
1 + g2(s)

) + δ1
(
1 + gτ1+1(s)

) + δ2
(
1 + gτ2(s)

))
h(s)

+ D11 + D12
(
δ
(
1 + g2(s)

) + δ1
(
1 + gτ1+1(s)

) + δ2
(
1 + gτ2(s)

))
.

By solving the differential inequality and given that s + sgτ (s) ≤ 1 + (1 + g−τ (1))sgτ (s) for
τ > 0 and s ≥ 0, we have

E
(
f (W) + 1

) ≤ C1(1 + s) exp
{
C2

(
δ
(
1 + sg2(s)

) + δ1
(
1 + sgτ1+1(s)

)
+ δ2

(
1 + sgτ2(s)

))}
,

where C1 and C2 are constants depending on c2, c3, d0, d1,μ1, τ1, τ2 and α. This completes
the proof. �

The next lemma gives the properties of the Stein solution.

LEMMA 4.7. Let fz be the solution to Stein’s equation (4.3). Then, for z ≥ 0,

∣∣fz(w)g(w)
∣∣ ≤

{
1 − F(z) w ≤ 0,

F (z) w > 0,
(4.57)

0 ≤ fz(w) ≤
{(

1 − F(z)
)
/c1 w ≤ 0,

F (z)/c1 w > 0,
(4.58)

and

∣∣f ′
z(w)

∣∣ ≤

⎧⎪⎪⎨
⎪⎪⎩

2
(
1 − F(z)

)
w ≤ 0,

1 0 < w ≤ z,

2F(z) w > z.

(4.59)

PROOF OF LEMMA 4.7. Our first step is to prove (4.57). By (4.4), we have

(4.60) fz(w)g(w) =

⎧⎪⎪⎨
⎪⎪⎩

F(w)g(w)(1 − F(z))

p(w)
w ≤ z,

F (z)g(w)(1 − F(w))

p(w)
w > z.

Without loss of generality, we must consider only three cases when z > 0:

1. w < 0: By (4.2), ∣∣fz(w)g(w)
∣∣ ≤ 1 − F(z).

2. 0 ≤ w ≤ z: Since w ≤ z, 1 − F(z) ≤ 1 − F(w), thus by (4.1),

∣∣fz(w)g(w)
∣∣ ≤ F(w)|g(w)|(1 − F(w))

p(w)
≤ F(w) ≤ F(z).
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3. w > z: By (4.1), ∣∣fz(w)g(w)
∣∣ ≤ F(z).

We can have a similar argument when z ≤ 0, which completes the proof of (4.57). Addition-
ally, (4.58) can be shown similarly. (4.59) follows directly from (4.3) and (4.57). �

LEMMA 4.8. For z > 0 and 0 ≤ τ ≤ max(2, τ1 + 1, τ2),

(4.61) E
(
fz(W)

∣∣g(W)
∣∣τ ) ≤ C

(
1 + zgτ (z)

)(
1 − F(z)

)
,

provided that max(δ, δ1, δ2) ≤ 1 and δzg2(z) + δ1zg
τ1+1(z) + δ2zg

τ2(z) ≤ 1.

PROOF OF LEMMA 4.8. By (4.4),

E
(
fz(W)

∣∣g(W)
∣∣τ ) = T4 + T5 + T6,

where

T4 = F(z)E
(

1 − F(W)

p(W)

∣∣g(W)
∣∣τ I (W > z)

)
,

T5 = (
1 − F(z)

)
E

(
F(W)

p(W)

∣∣g(W)
∣∣τ I (W < 0)

)
,

T6 = (
1 − F(z)

)
E

(
F(W)

p(W)

∣∣g(W)
∣∣τ I (0 ≤ W ≤ z)

)
.

(i) For T4, we first consider the case when τ ≥ 1. As g(w) is increasing, eG(w)−G(w−z)

is also increasing with respect to w; thus,

I (W > z) ≤ eG(W)−G(W−z)I (W > z)

eG(z)
.

By Lemma 4.6, we have max(δ, δ1, δ2) ≤ 1 and z, satisfying that δzg2(z) + δ1zg
τ1+1(z) +

δ2zg
τ2(z) ≤ 1,

E
(
f (W,z) + 1

) ≤ C(1 + z).

Hence, by (4.1) and Lemma 4.5, we have

(4.62)

T4 ≤ Ce−G(z)E
∣∣g(W)

∣∣τ−1
eG(W)−G(W−z)I (W > z)

≤ Ce−G(z)(1 + gτ−1(z)
)
E

(
f (W,z) + 1

)
≤ Ce−G(z)(1 + zgτ−1(z)

)
≤ C

(
1 + zgτ (z)

)(
1 − F(z)

)
,

for max(δ, δ1, δ2) ≤ 1 and z, satisfying that δzg2(z) + δ1zg
τ1+1(z) + δ2zg

τ2(z) ≤ 1. If 0 ≤
τ < 1, then gτ (w) ≤ 2(1 + g(w))/(1 + g1−τ (z)) for w > z. Therefore, (4.62) also holds for
0 ≤ τ < 1.

(ii) As to T5, because F(w)/p(w) ≤ 1/c1 for w ≤ 0,

T5 ≤ 1

c1

(
1 − F(z)

)
E

∣∣g(W)
∣∣τ I (W < 0).

By (4.32), we have

(4.63) T5 ≤ C
(
1 − F(z)

)
for some constant C.
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(iii) We now bound T6. By Lemmas 4.6 and 4.5,

(4.64)

T6 ≤ C
(
1 − F(z)

)
EeG(W)

∣∣g(W)
∣∣τ I (0 ≤ W ≤ z)

≤ C
(
1 − F(z)

)(
1 + gτ (z)

)
EeG(W)I (0 ≤ W ≤ z)

≤ C
(
1 − F(z)

)(
1 + zgτ (z)

)
.

By (4.62)–(4.64), we have

E
(
fz(W)

∣∣g(W)
∣∣τ ) ≤ C

(
1 + zgτ (z)

)(
1 − F(z)

)
,

which completes the proof. �

4.4. Proofs of Propositions 4.1 and 4.2. We are now ready to give the proofs of Proposi-
tions 4.1 and 4.2.

PROOF OF PROPOSITIONS 4.1. Recalling (2.9), we have

(4.65)

I1 ≤ d0E
(

sup
|t |≤δ

∣∣fz(W + t)g(W + t) − fz(W)g(W)
∣∣)

≤ δd0E sup
|t |≤δ

∣∣(fz(W + t)g(W + t)
)′∣∣.

We first prove (4.6). By Lemma 4.7, ‖fz‖ ≤ 1/c1 and ‖f ′
z‖ ≤ 2. Thus, for 0 < δ ≤ 1,

(4.66)

E
(

sup
|t |≤δ

∣∣(fz(W + t)g(W + t)
)′∣∣)

≤ E
(

sup
|t |≤δ

(∣∣fz(W + t)g′(W + t)
∣∣ + ∣∣f ′

z(W + t)g(W + t)
∣∣))

≤ (2 + 1/c1)E
(

sup
|t |≤δ

(∣∣g′(W + t)
∣∣ + ∣∣g(W + t)

∣∣))

≤ 4c3(1 + 1/c1)(1 + c2)
(
E

∣∣g(W)
∣∣ + μ1

)
,

where in the last inequality we use (2.6) and Lemma 4.2. This proves (4.6) by (4.66), (4.65)
and (4.32).

Next, we prove (4.7). Similar to the proof of (4.6), we first calculate the following term:

E
(

sup
|t |≤δ

∣∣(fz(W + t)g(W + t)
)′∣∣).

Note that

(4.67)

(
fz(w)g(w)

)′

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p(w)g(w) + F(w)g′(w) + F(w)g2(w)

p(w)

(
1 − F(z)

)
w ≤ z,

−p(w)g(w) + (1 − F(w))g′(w) + (1 − F(w))g2(w)

p(w)
F (z) w > z.

For w + t ≤ 0, by (4.2), we have∣∣(fz(w + t)g(w + t)
)′∣∣

≤ (
1 − F(z)

)(
2
∣∣g(w + t)

∣∣ + g′(w + t)

max{c1, |g(w + t)|})
)

≤ (
1 − F(z)

)(
2
∣∣g(w + t)

∣∣ + c3(1 + 1/c1)
)

≤ C
(
1 − F(z)

)(∣∣g(w)
∣∣ + 1

)
.
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Thus, by (4.32),

(4.68) E
(

sup
|t |≤δ

∣∣(fz(W + t)g(W + t)
)′∣∣I (W + t ≤ 0)

)
≤ C

(
1 − F(z)

)
.

For w + t > z, and |t | ≤ δ, again by Lemma 4.2, we have

(4.69)

∣∣(fz(w + t)g(w + t)
)′∣∣

≤ F(z)

(∣∣g(w + t)
∣∣ + 1 − F(w + t)

p(w + t)

(∣∣g′(w + t)
∣∣ + ∣∣g(w + t)

∣∣2))

≤ C
(
1 + ∣∣g(w + t)

∣∣)
≤ C

(∣∣g(w)
∣∣ + 1

)
.

Hence, by Lemmas 4.5 and 4.6, we have

(4.70)

E sup
|t |≤δ

∣∣(fz(W + t)g(W + t)
)′∣∣I (W + t ≥ z)

≤ CE
((∣∣g(W)

∣∣ + 1
)
I (W > z − δ)

)
≤ Cp(z − δ)E

(
eG(W)−G(W−z+δ)

∣∣g(W)
∣∣I (W > z − δ)

)
≤ Ceδg(z)p(z)

(
1 + g(z)

)
E

(
eG(W)−G(W−z+δ)I (W > z − δ)

)
≤ Ceδg(z)(1 + zg2(z)

)(
1 − F(z)

)
,

where we use the Lemma 4.1 in the last line. Also note that by (4.17), δg(z) ≤ δ+δzg2(z) ≤ 2
for z ≥ 1 and δg(z) ≤ μ1 for 0 ≤ z ≤ 1. Hence,

(4.71) δg(z) ≤ max(2,μ1).

Thus, (4.70) and (4.71) yield

(4.72)
E

(
sup
|t |≤δ

∣∣(fz(W + t)g(W + t)
)′∣∣I (W + t > z)

)

≤ C
(
1 + zg2(z)

)(
1 − F(z)

)
.

For w + t ∈ (0, z) and |t | ≤ δ, by (4.22), (4.67) and (4.71), we have

(4.73)

∣∣(fz(w + t)g(w + t)
)′∣∣

≤ C
(
1 − F(z)

)
eG(w+t)(1 + g(w + t)2)

≤ C
(
1 − F(z)

)
eG(w)+δg(z)(1 + ∣∣g(w)

∣∣2)
≤ C

(
1 − F(z)

)
eG(w)(1 + ∣∣g(w)

∣∣2)
.
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By Lemmas 4.5 and 4.6 and (4.22), we have

(4.74)

E
(

sup
|t |≤δ

∣∣(fz(W + t)g(W + t)
)′∣∣I (0 ≤ W + t ≤ z)

)

≤ C
(
1 − F(z)

)
EeG(W)(1 + ∣∣g(W)

∣∣2)
I (−δ ≤ W ≤ z + δ)

= C
(
1 − F(z)

)
EeG(W)(1 + ∣∣g(W)

∣∣2)
I (−δ ≤ W ≤ 0)

+ C
(
1 − F(z)

)
EeG(W)(1 + ∣∣g(W)

∣∣2)
I (0 ≤ W ≤ z + δ)

≤ Ceμ1
(
1 + μ2

1
)(

1 − F(z)
)

+ C
(
1 − F(z)

)(
1 + (z + δ)g2(z + δ)

)
≤ C

(
1 − F(z)

)(
1 + zg2(z)

)
.

Putting together (4.68), (4.72) and (4.74) gives

(4.75) E
(

sup
|t |≤δ

∣∣(fz(W + t)g(W + t)
)′∣∣) ≤ C

(
1 + zg2(z)

)(
1 − F(z)

)
.

By (4.65) and (4.75), we obtain (4.7). �

PROOF OF PROPOSITION 4.2. By Lemma 4.7, we have ‖fzg‖ ≤ 1; thus, by (2.7) and
(4.32),

I2 + I3 ≤ CE
∣∣E(K̂1 | W) − 1

∣∣ ≤ Cδ1
(
E

(∣∣g(W)
∣∣τ1

) + 1
) ≤ Cδ1.

To bound I4, by (2.8), (4.32) and (4.58), we have

I4 ≤ Cδ2.

This proves (4.8).
We now move to prove (4.9) and (4.10). As to I2, by (2.7) and Lemma 4.8, for

z ≥ 0,max(δ, δ1, δ2) ≤ 1 and δzg2(z) + δ1zg
τ1+1(z) + δ2zg

τ2(z) ≤ 1, we have

(4.76)

I2 ≤ δ1E
(
fz(W)

∣∣g(W)
∣∣(∣∣g(W)

∣∣τ1 + 1
))

≤ Cδ1E
(
fz(W)

(
1 + ∣∣g(W)

∣∣τ1+1))
≤ Cδ1

(
1 + zgτ1+1(z)

)(
1 − F(z)

)
.

As to I3, note that

I (W > z) ≤ eG(W)−G(W−z)

eG(z)
I (W > z).

By Lemmas 4.5 and 4.6,

(4.77)

E
((

1 + ∣∣g(W)
∣∣τ1

)
I (W > z)

)
≤ Cp(z)E

(
eG(W)−G(W−z)(1 + ∣∣g(W)

∣∣τ1
)
I (W > z)

)
≤ C

(
1 + zgτ1(z)

)
p(z)

≤ C
(
1 + zgτ1+1(z)

)(
1 − F(z)

)
,
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where we use (4.1) in the last inequality. Thus, by Lemma 4.5 and (4.77),

(4.78)

I3 ≤ δ1
(
1 − F(z)

)
E

(∣∣g(W)
∣∣τ1 + 1

)
+ δ1E

((∣∣g(W)
∣∣τ1 + 1

)
I (W > z + δ)

)
≤ δ1

(
1 − F(z)

)
E

(∣∣g(W)
∣∣τ1 + 1

)
+ δ1E

((∣∣g(W)
∣∣τ1 + 1

)
I (W > z)

)
≤ Cδ1

(
1 + zgτ1+1(z)

)(
1 − F(z)

)
.

(4.9) now follows by (4.76) and (4.78).
As to I4, because |R(W)| ≤ δ2(1 + |g(W)|τ2), by (4.61), we have

I4 ≤ Cδ2
(
1 + zgτ2(z)

)(
1 − F(z)

)
.(4.79)

This completes the proof of Proposition 4.2. �

4.5. Proof of Remark 2.1. In this subsection, we assume that the condition (2.7) in The-
orem 2.1 is replaced by (2.17)–(2.19), then the result of Remark 2.1 follows from the proof
of Theorem 2.1, Propositions 4.1 and 4.2 and the following proposition:

PROPOSITION 4.3. Assume that the condition (2.7) in Theorem 2.1 is replaced by (2.17)–
(2.19), then (4.8) and (4.9) hold.

PROOF OF PROPOSITIONS 4.3. Following the proof of Propositions 4.2, it suffices to
prove the following inequalities:

E|K2| ≤ δ1,(4.80)

and for z > 0 such that δzg2(z) + δ1zg
τ1+1(z) + δ2zg

τ2(z) ≤ 1,

E
∣∣fz(W)g(W)K2

∣∣ ≤ Cδ1
(
1 + zgτ1+1(z)

)(
1 − F(z)

)
,(4.81)

E|K2|I (W > z) ≤ Cδ1
(
1 + zgτ1+1(z)

)(
1 − F(z)

)
.(4.82)

For (4.80), by (2.19) with s = 0, noting that ζ(W,0) ≡ 1 and g(0) = 0, we have (4.80)
holds.

For (4.81), by the definition of fz, and by Lemmas 4.1 and 4.7, we have

(4.83) E
∣∣fz(W)g(W)K2

∣∣ ≤ T7 + T8 + T9,

where

T7 = (
1 − F(z)

)
E|K2|I (W < 0),

T8 = (
1 − F(z)

)
E|K2|g(W)eG(W)I (0 ≤ W ≤ z),

T9 = E|K2|I (W > z).

For T7, by (4.80), we have

(4.84) T7 ≤ δ1
(
1 − F(z)

)
.

For T8, by the monotonicity of g(·) and by (2.19) and Remark 4.1, we have

(4.85)

T8 ≤ (
1 − F(z)

)
g(z)E|K2|ζ(W, z)

≤ δ1
(
1 − F(z)

)(
1 + g(z)τ1+1)

Eζ(W, s)

≤ Cδ1
(
1 + zgτ1+1(z)

)(
1 − F(z)

)
.
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For T9, by the Chebyshev inequality, by (2.19) and Lemmmas 4.6 and 4.1, we have

(4.86)

T9 ≤ e−G(z)E|K2|ζ(W, z)I (W > z)

≤ Cδ1
(
1 + zgτ1(z)

)
e−G(z)

≤ Cδ1
(
1 + zgτ1+1(z)

)(
1 − F(z)

)
.

The inequality (4.81) follows from (4.83)–(4.86) while (4.82) follows from (4.86). This
completes the proof. �

4.6. Proof of Remark 2.2. In this subsection, we assume that the condition (2.11) is re-
placed by (2.20) and (2.21). The conclusion of Remark 2.2 follows from the proof of Theo-
rem 2.1 and the following lemma.

LEMMA 4.9. Let the conditions in Remark 2.2 be satisfied. Furthermore, 0 < δ ≤ 1, and
s > 0 such that δsg2(s) ≤ 1. For 0 ≤ τ ≤ max{2, τ1 + 1, τ2}, inequalities (4.32)–(4.34) hold.

PROOF. Recall that s0 = max{s : δsg2(s) ≤ 1} and δ ≤ 1. We have

s0 ≥ s1 and δs1g
2(s1) = 1.

Following the proof of Lemma 4.5, it suffices to prove the following two inequalities.
For Q2 defined in (4.35),

Q2 ≤
(
α + 1 − α

4

)
Egτ+(W) + C,(4.87)

and for M4 defined in (4.40),

M4 ≤
(
α + 1 − α

4

)
E

∣∣g(W)
∣∣τ f (W) +

(
4α

1 − α

)τ−1
Ef (W) + C.(4.88)

For Q2, by (2.20) and similar to (4.38), we have

Q2 ≤
(
α + 1 − α

4

)
Egτ+(W) +

(
4

1 − α

)τ−1
+ d2Egτ+(W)I (W > κ).

For the last term, by (2.10) and (2.21) and noting that 0 ≤ τ ≤ max{2, τ1 + 1, τ2}, we obtain

(4.89)

d2Egτ+(W)I (W > κ) ≤ d−τ
1 d2δ

−τ P(W > κ)

≤ d−τ
1 d3δ

−τ exp
(−2s0d

−1
1 δ−1)

≤ d−τ
1 d3 sup

δ>0

{
δ−τ exp

(−2s1d
−1
1 δ−1)}

= d3

(
τ

2s1

)τ

e−τ ,

where the equality holds when δ = 2s1/(d1τ). The inequality (4.87) follows from (4.38) and
(4.89).

As to M4, by (2.20), we have

M4 ≤
(
α + 1 − α

4

)
E

∣∣g(W)
∣∣τ f (W) +

(
4α

1 − α

)τ−1
Ef (W)

+ d2E
∣∣gτ (W)

∣∣eG(W)−G(W−s)I (W > κ).
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For the last term, by (2.10) and (2.21) and noting that g(·) is nondecreasing and s ≤ s0, similar
to (4.89), we have

(4.90)

d2E
∣∣gτ (W)

∣∣eG(W)−G(W−s)I (W > κ)

≤ d−τ
1 d2δ

−τ esd−1
1 δ−1

P(W > κ)

≤ d−τ
1 d3δ

−τ e−s0d
−1
1 δ−1

≤ d−τ
1 d3 sup

δ>0

{
δ−τ e−s1d

−1
1 δ−1}

= d3

(
τ

s1

)τ

e−τ ,

where the equality holds when δ = s1/(d1τ). Combining (4.46) and (4.90), inequality (4.88)
holds. Following the proof of Lemma 4.5 and replacing (4.38) and (4.46) with (4.87) and
(4.88), respectively, we complete the proof of Lemma 4.9. �

5. Proofs of Theorems 3.1–3.2.

5.1. Proof of Theorem 3.1. In this subsection, we use Remarks 2.1 and 2.2 to prove the
result.

We first prove some preliminary lemmas.

LEMMA 5.1. Let ξ ∼ ρ. For s ∈ R, define

ψn(s) = E(ξe
ξ2

2n
+ξs)

E(e
ξ2
2n

+ξs)

, ψ∞(s) = E(ξeξs)

E(eξs)
,

and

φn(s) = E(ξ2e
ξ2

2n
+ξs)

E(e
ξ2
2n

+ξs)

, φ∞(s) = E(ξ2eξs)

E(eξs)
.

Let m = 1
n

∑n
i=1 Xi and mi = 1

n

∑
j 	=i Xj . We have for each 1 ≤ i ≤ n,∣∣ψ∞(m) − ψn(mi)

∣∣ ≤ Cn−1,(5.1) ∣∣φ∞(m) − φn(mi)
∣∣ ≤ Cn−1,(5.2)

where C is a positive constant depending only on L.

PROOF OF LEMMA 5.1. Recall that |ξ | ≤ L and observe that

∣∣E(
ξ
(
e

ξ2

2n
+ξs − eξs))∣∣ ≤ 1

2n
E|ξ |3e ξ2

2n
+ξs ≤ L3

2n
eL2/2Eeξs,

∣∣E(
e

ξ2

2n
+ξs − eξs)∣∣ ≤ 1

2n
E|ξ |2e ξ2

2n
+ξs ≤ L2

2n
eL2/2Eeξs,

∣∣Eξeξs
∣∣ ≤ LEeξs,

and

E
(
e

ξ2

2n
+ξs) ≥ Eeξs.



MODERATE DEVIATION FOR NONNORMAL APPROXIMATION 273

Hence,

(5.3)

∣∣ψn(s) − ψ∞(s)
∣∣ ≤ |Eeξs | × |Eξe

ξ2

2n
+ξs − Eξeξs |

Ee
ξ2
2n

+ξsEeξs

+ |Eξeξs | × |Ee
ξ2

2n
+ξs − Eeξs |

Ee
ξ2
2n

+ξsEeξs

≤ Cn−1,

where C > 0 depends only on L. Moreover,

ψ ′∞(s) = E(ξ2eξs)

E(eξs)
−

{
E(ξeξs)

E(eξs)

}2
.

Recalling that |ξ | ≤ L, |Xi | ≤ L and |m − mi | ≤ L/n, and using the fact that

sup
|s|≤L

∣∣ψ ′∞(s)
∣∣ ≤ L2,

we have

(5.4)
∣∣ψ∞(m) − ψ∞(mi)

∣∣ ≤ L3n−1.

Following (5.3)–(5.4), the inequality (5.1) holds.
A similar argument implies that (5.2) holds as well. �

Set

F = σ {X1, . . . ,Xn}.(5.5)

For any 1 ≤ i, j ≤ n, define

(5.6) F (i) = σ
({Xk, k 	= i}),F (i,j) = σ

({Xk, k 	= i, j}).
LEMMA 5.2. Let W = n−1+ 1

2k
∑n

i=1 Xi , G(w) = h(2k)(0)w2k/(2k)!, and

ζ(w, s) =

⎧⎪⎪⎨
⎪⎪⎩

eG(w)−G(w−s) w > s,

eG(w) 0 ≤ w ≤ s,

1 w < 0.

Suppose (2.9), (2.10), (2.20) and (2.21) are satisfied. Then, we have

(5.7) E

∣∣∣∣∣1

n

n∑
i=1

(
X2

i − E
(
X2

i | F (i)))∣∣∣∣∣ζ(W, s) ≤ Cn−1/k(1 + |s|2)
Eζ(W, s),

where C is a positive constant depending only on ρ.

We are now ready to prove Theorem 3.1.

PROOF OF THEOREM 3.1. We first construct the exchangeable pair of W . For each 1 ≤
i ≤ n, let X′

i follow the conditional distribution of Xi given {Xj, j 	= i}, and be conditionally
independent of Xi given {Xj, j 	= i}. Let I be a random index uniformly distributed among
{1,2, . . . , n}, independent of all other random variables. Define S ′

n = Sn − XI + X′
I and
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W ′ = n− 1
2k S′

n. Then (W,W ′) is an exchangeable pair. Let F,F (i) and F (i,j) be defined as in
(5.5) and (5.6). Let ψn,ψ∞, φn and φ∞ be as defined in Lemma 5.1. We have

E
(
X′

i | F (i)) = E
(
Xi | F (i)) = ψn

(
mi(X)

)
,(5.8)

where mi(X) = 1
n

∑
j 	=i Xj .

Thus,

(5.9)

E
(
XI − X′

I | F) = 1

n

n∑
i=1

E
(
Xi − X′

i | F)

= m(X) − 1

n

n∑
i=1

E
(
X′

i | F (i))

= m(X) − 1

n

n∑
i=1

ψn

(
mi(X)

)

= m(X) − ψ∞
(
m(X)

) + r(X)

= h′(m(X)
) + r(X),

where m(X) = (1/n)
∑n

i=1 Xi , h is as defined in (3.3), and

(5.10) r(X) = 1

n

n∑
i=1

{
ψ∞

(
m(X)

) − ψn

(
mi(X)

)}
.

By Lemma 5.1, we have ∣∣r(X)
∣∣ ≤ Cn−1,

where C > 0 is a constant depending only on ρ. As ρ is symmetric, h(2k+1)(0) = 0. By the
Taylor expansion, for |w| ≤ L, ∣∣h′(w) − g(w)

∣∣ ≤ C|w|2k+1,

where C > 0 is a constant depending only on L. Therefore,

E
(
W − W ′ | F) = n−1+ 1

2k E
(
XI − X′

I | F)
= n−1+ 1

2k
(
h′(m(X)

) + r
(
m(X)

))
= λ

(
g(W) + R(W)

)
,

where λ = n−2+1/k ,

g(w) = h(2k)(0)

(2k − 1)!w
2k−1,

∣∣R(w)
∣∣ ≤ C1n

−1/k(|w|2k+1 + 1
)
,

where C1 > 0 depends only on ρ.

We now check the conditions (2.20) and (2.21). As g(w) = h(2k)(0)
(k−1)! w2k−1, then

∣∣R(W)
∣∣ ≤ C1

(
(k − 1)!
h(2k)(0)

+ 1
)
n−1/k(∣∣W 2g(W)

∣∣ + 1
)
.

Moreover, recalling that |W | ≤ Ln
1

2k , we have∣∣R(W)
∣∣ ≤ C1

(
n(2k−1)/2kL2k+1 + 1

)
.
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Set

κ =
(

2C1

(
1 + (k − 1)!

h(2k)(0)

))−1/2
n

1
2k ,

where d2 = C1(n
(2k−1)/2kL2k+1 + (k−1)!

h(2k)(0)
+ 2). Thus,

(5.11)
∣∣R(W)

∣∣ ≤ 1

2

(∣∣g(W)
∣∣ + 1

) + d2I
(|W | ≥ κ

)
.

By Chatterjee and Dey [8], Propostion 6, for any n ≥ 1 and t ≥ 0,

P
(|W | ≥ t

) ≤ 2e−cρ t2k

,

where cρ > 0 is a constant depending only on ρ. Note that δ = Ln−1+ 1
2k and by the definition

of g(·), we have

s0 = max
{
s : δsg2(s) ≤ 1

} = C2n
(2k−1)/(2k(4k−1)),

where C2 > 0 is a constant depending on ρ. Moreover, there exists a constant d1 > 0 depend-
ing on ρ such that δ|g(W)| ≤ d1. Then, there exist positive constants C3 and C4 depending
on ρ such that

(5.12) d2e
2s0d

−1
1 δ−1

P
(|W | ≥ κ

) ≤ C3(n + 1) exp
{
C4n

2(k−1)/(4k−1) − cρn
} ≤ d3,

where d3 > 0 is a constant depending on ρ. Thus the conditions (2.10), (2.20) and (2.21)
hold.

For the conditional second moment, by Lemma 5.1, we have

(5.13)

E
((

XI − X′
I

)2 | F)
= 1

n

n∑
i=1

E
((

Xi − X′
i

)2 | F)

= 1

n

n∑
i=1

X2
i − 2

n

n∑
i=1

Xiψn

(
mi(X)

) + 1

n

n∑
i=1

φn

(
mi(X)

)

= 1

n

n∑
i=1

(
X2

i − φn

(
mi(X)

)) − 2m(X)ψ∞
(
m(X)

)

+ 2φ∞
(
m(X)

) + r2(X),

where ψn,φn and φ∞ are as defined in Lemma 5.1. By the Taylor expansion, we have

(5.14)
∣∣φ∞

(
m(X)

) − 1
∣∣ = ∣∣h′′(m(X)

)∣∣ ≤ Cn−1+1/k(1 + |W |2k−2)
,

and

(5.15)
∣∣m(X)ψ∞

(
m(X)

)∣∣ ≤ Cn−1/k|W |2 + Cn−1|W |2k,

where C > 0 is a constant depending only on ρ. By the definition of (W,W ′) and (5.13)–
(5.15), with λ = n−2+1/k , we have∣∣∣∣ 1

2λ
E

((
W − W ′)2 | F) − 1

∣∣∣∣
=

∣∣∣∣1

2
E

((
XI − X′

I

)2 | F) − 1
∣∣∣∣

≤ 1

2

∣∣∣∣∣1

n

n∑
i=1

(
X2

i − φn

(
mi(X)

))∣∣∣∣∣ + Cn−1/k(1 + |W |2)
.
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Moreover, as |Xi | ≤ L, we have∣∣∣∣ 1

2λ
E

((
W − W ′)2 | F) − 1

∣∣∣∣ ≤ 2L2 + 1 =: d0.

Then (2.9) holds. By Lemma 5.2, we have the condition (2.19) in Remark 2.1 is satisfied.
Hence, we have (2.8)–(2.10) and the conditions in Remarks 2.1 and 2.2 are satisfied with

δ1 = δ2 = Cn−1/k , τ1 = 2
2k−1 , and τ2 = 1 + 2

2k−1 . By Remarks 2.1 and 2.2, we complete the
proof of Theorem 3.1. �

It suffices to proof Lemma 5.2.

PROOF OF LEMMA 5.2. In this proof, we denote C by a general positive constant de-
pending only on ρ. By the Cauchy inequality, we have

(5.16)

E

∣∣∣∣∣1

n

n∑
i=1

(
X2

i − E
(
X2

i | F (i)))∣∣∣∣∣ζ(W, s)

≤
(

E

∣∣∣∣∣1

n

n∑
i=1

(
X2

i − E
(
X2

i | F (i)))∣∣∣∣∣
2

ζ(W, s) × Eζ(W, s)

)1/2

.

Expand the square term, and we have

(5.17) E

∣∣∣∣∣1

n

n∑
i=1

(
X2

i − E
(
X2

i | F (i)))∣∣∣∣∣
2

ζ(W, s) = H1 + H2,

where

H1 = 1

n2

n∑
i=1

E
{(

X2
i − E

(
X2

i | F (i)))2
ζ(W, s)

}
,

H2 = 1

n2

∑
i 	=j

E
{(

X2
i − E

(
X2

i | F (i)))(X2
j − E

(
X2

j | F (j)))ζ(W, s)
}
.

Recalling that |Xi | ≤ L, we have

(5.18) H1 ≤ 4L4n−1Eζ(W, s).

As for H2, we first introduce some notation. For i 	= j , let E(i,j) denote the conditional
expectation given F (i,j), where F (i,j) is as in (5.6). Note that

E(i,j)(X2
i

) =
∫∫

x2 exp( 1
2n

(x + y)2 + (x + y)mij ) dρ(x) dρ(y)∫∫
exp( 1

2n
(x + y)2 + (x + y)mij ) dρ(x) dρ(y)

,

where mij := mij (X) = 1
n

∑
k 	=i,j Xk . Similar to Lemma 5.1, we have for any i 	= j ,

(5.19)
∣∣E(

X2
i | F (i)) − E(i,j)(X2

i

)∣∣ ≤ Cn−1,

where C > 0 depends only on L. Define

(5.20) H3 = 1

n2

∑
i 	=j

E
{(

X2
i − E(i,j)(X2

i

))(
X2

j − E(i,j)(X2
j

))
ζ(W, s)

}
,

and then by (5.19) and (5.20), we have

(5.21) |H2 − H3| ≤ Cn−1Eζ(W, s).
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We now move to give the bound of H3. Define

W(i,j) = W − n−1+ 1
2k (Xi + Xj).

Let

q(w, s) =

⎧⎪⎪⎨
⎪⎪⎩

G(w) − G(w − s) w > s,

G(w) 0 ≤ w ≤ s,

0 w < 0,

and then q(w, s) = log ζ(w, s) and q ′(w) is continuous on R. Therefore, by the Taylor ex-
pansion, we have

(5.22)
q(W) − q

(
W(i,j)) = (

W − W(i,j))q ′(W(i,j))
+ 1

2

(
W − W(i,j))2

q ′′(w0),

where w0 belongs to either (W,W(i,j)) or (W(i,j),W). Note that G(w) = Cw2k for some

constant C, |W | ≤ Ln
1

2k and |W − W(i,j)| ≤ 2Ln−1+ 1
2k . By the definition of q , we have∣∣(W − W(i,j))q ′(W(i,j))∣∣

≤ Cn−1+ 1
2k

∣∣W(i,j)
∣∣2k−1(5.23)

≤ Cn−1+ 1
2k

(|W |2k−1 + 1
)

and ∣∣∣∣1

2

(
W − W(i,j))2

q ′′(w0)

∣∣∣∣ ≤ Cn−1,(5.24)

where C depends only on ρ. Therefore, by (5.22)–(5.24) and using the fact that |W | ≤ Ln
1

2k ,
we have

(5.25)

∣∣q(W) − q
(
W(i,j))∣∣ ≤ Cn−1+ 1

2k
(|W |2k−1 + 1

)
≤ C.

Observe that

E(i,j){(X2
i − E(i,j)(X2

i

))(
X2

j − E(i,j)(X2
j

))
ζ(W, s)

} = ζ
(
W(i,j))M(i,j),(5.26)

where

M(i,j) = E(i,j){(X2
i − E(i,j)(X2

i

))(
X2

j − E(i,j)(X2
j

))
eq(W)−q(W(i,j))}.

Applying the Taylor expansion to the exponential function, we have

(5.27) M(i,j) = M
(i,j)
1 + M

(i,j)
2 + M

(i,j)
3 ,

where

M
(i,j)
1 = E(i,j){(X2

i − E(i,j)X2
i

)(
X2

j − E(i,j)X2
j

)}
,

M
(i,j)
2 = E(i,j)((X2

i − E(i,j)X2
i

)(
X2

j − E(i,j)X2
j

){
q(W) − q

(
W(i,j))}),

and

M
(i,j)
3 = M(i,j) − M

(i,j)
1 − M

(i,j)
2 .
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For M
(i,j)
1 , since E(i,j)X2

i = E(i,j)X2
j , we have

M
(i,j)
1 = E(i,j)X2

i X
2
j − E(i,j)X2

i E(i,j)X2
j

=
∫∫

x2y2 exp( 1
2n

(x + y)2 + (x + y)mij ) dρ(x) dρ(y)∫∫
exp( 1

2n
(x + y)2 + (x + y)mij ) dρ(x) dρ(y)

−
(∫∫

x2 exp( 1
2n

(x + y)2 + (x + y)mij ) dρ(x) dρ(y)∫∫
exp( 1

2n
(x + y)2 + (x + y)mij ) dρ(x) dρ(y)

)2

= M
(i,j)
11 + M

(i,j)
12 ,

where

(5.28)

M
(i,j)
11 =

∫∫
x2y2 exp((x + y)mij ) dρ(x) dρ(y)∫∫

exp((x + y)mij ) dρ(x) dρ(y)

−
(∫∫

x2 exp((x + y)mij ) dρ(x) dρ(y)∫∫
exp((x + y)mij ) dρ(x) dρ(y)

)2

= 0,

and M
(i,j)
12 = M

(i,j)
1 − M

(i,j)
11 . Similar to Lemma 5.1, we have

(5.29)
∣∣M(i,j)

12

∣∣ ≤ Cn−1.

By (5.28)–(5.29), we have

(5.30)
∣∣M(i,j)

1

∣∣ ≤ Cn−1.

For M
(i,j)
2 , by (5.22) and (5.24), we have

M
(i,j)
2 = M

(i,j)
21 + M

(i,j)
22 ,

where

M
(i,j)
21 = n−1+ 1

2k q ′(W(i,j))E(i,j){(X2
i − E(i,j)X2

i

)(
X2

j − E(i,j)X2
j

)
(Xi + Xj)

}
,

M
(i,j)
22 = 1

2
E(i,j){(X2

i − E(i,j)X2
i

)(
X2

j − E(i,j)X2
j

)(
W − W(i,j))2

q ′′(w0)
}
,

and w0 is as defined in (5.22). By (5.24), and recalling that |Xi | ≤ L, we have∣∣M(i,j)
22

∣∣ ≤ Cn−1.

Similar to (5.30), we have∣∣E(i,j){(X2
i − E(i,j)X2

i

)(
X2

j − E(i,j)X2
j

)
(Xi + Xj)

}∣∣ ≤ Cn−1.

Moreover, recalling that |W(i,j)| ≤ Ln
1

2k and |q ′(W(i,j))| ≤ Cn1− 1
2k , we have∣∣M(i,j)

21

∣∣ ≤ Cn−1.

Thus,

(5.31)
∣∣M(i,j)

2

∣∣ ≤ Cn−1.
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For M
(i,j)
3 , by the Taylor expansion, noting again that k ≥ 2, |W | ≤ Ln

1
2k and |Xi | ≤ L for

1 ≤ i ≤ n, and by (5.23) and (5.24), we have

(5.32)

∣∣M(i,j)
3

∣∣ ≤ C
∣∣q(W) − q

(
W(i,j))∣∣2eq(W)−q(W(i,j))

≤ Cn−2+1/k(|W |4k−2 + 1
)

≤ Cn−2/k(|W |4 + 1
)
.

By (5.27) and (5.30)–(5.32), we have∣∣M(i,j)
∣∣ ≤ Cn−2/k(|W |4 + 1

)
,

substituting which to (5.26), we have

(5.33)

E
∣∣E(i,j){(X2

i − E(i,j)(X2
i

))(
X2

j − E(i,j)(X2
j

))
ζ(W, s)

}∣∣
≤ Cn−2/kE

{(|W |4 + 1
)
ζ
(
W(i,j))}

≤ Cn−2/kE
{(|W |4 + 1

)
ζ(W, s)

}
≤ Cn−2/k(1 + s4)

Eζ(W, s),

where in the last inequality we used Lemma 4.9 recalling the fact that (5.11) and (5.12) are
satisfied. By (5.33), we have the term H3 in (5.20) can be bounded by

(5.34) |H3| ≤ Cn−2/k(1 + s4)
Eζ(W, s).

By (5.16)–(5.18), (5.21) and (5.34), we complete the proof of (5.7). �

5.2. Proof of Theorem 3.2. In this subsection, we use Remark 2.2 to prove the result.

PROOF OF THEOREM 3.2. For any σ ∈ �,uv ∈ D and s, t ∈ {0,1}, let σ st
uv denote the

configuration τ ∈ �, such that τi = σi for i 	= u, v and τu = s, τv = t . Let (σ ′
u, σ

′
v) be inde-

pendent of (σu, σv) and follow the conditional distribution

P
(
σ ′

u = s, σ ′
v = t | σ ) = p(σ st

uv)∑
s,t∈{0,1} p(σ st

uv)
.

Let M = ∑n
i=1 σi and M ′ = M − σu − σv + σ ′

u + σ ′
v . Then, by Chen [15], (M,M ′) is ex-

changeable. Also, by Chen [15], Proposition 2, we have

E
(
M − M ′ | σ ) = L1

(
m(σ)

) + R1
(
m(σ)

)
,(5.35)

E
((

M − M ′)2 | σ ) = L2
(
m(σ)

) + R2
(
m(σ)

)
,(5.36)

where m(σ) = M/n and

L1(x) = 2(1 − x)(x2 − (1 − x)e2τ(x))

(1 − x) + e2τ(x)
, for 0 < x < 1,

L2(x) = 4(1 − x)(x2 + (1 − x)e2τ(x))

(1 − x) + e2τ(x)
, for 0 < x < 1,

∣∣R1(x)
∣∣ + ∣∣R2(x)

∣∣ ≤ C

n

for some constant C. Next, we consider two cases. In the first case, (J,h) /∈  ∪ {(Jc, hc)},
and in the second case, (J,h) = (Jc, hc).
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Case 1. When (J,h) /∈  ∪ {(Jc, hc)}. Define W = n−1/2(M − nm0) and W ′ =
n−1/2(M ′ − nm0); then, (W,W ′) is also an exchangeable pair. Moreover,∣∣W − W ′∣∣ ≤ 2n−1/2 =: δ.

Note that L1(m0) = 0 by observing m2
0 = (1 − m0)e

2τ(m0). Moreover, we have

L′
1(m0) = 1

2λ0
L2(m0) > 0,

where λ0 = (−1/H ′′(m0)) − (1/2J ) > 0. By the Taylor expansion, we have

L1
(
m(σ)

) = L′
1(m0)

(
m(σ) − m0

) +
∫ m(σ)

m0

L′′
1(s)

(
m(σ) − s

)
ds.

Let λ = L2(m0)/(2n), and we have

n−1/2L1
(
m(σ)

) = λ
(
λ−1

0 W + r(W)
)
,

where

r(W) = 2n1/2L−1
2 (m0)

∫ m(σ)

m0

L′′
1(s)

(
m(σ) − s

)
ds.

Therefore, together with the definition of (W,W ′) and (5.35), we have

E
(
W − W ′ | W ) = n−1/2(

L1
(
m(σ)

) + R1
(
m(σ)

)) = λ
(
g(W) + R(W)

)
,

where

g(W) = W/λ0 and R(W) = r(W) + 2n1/2

L2(m0)
R1

(
m(σ)

)
.

Thus, conditions (A1)–(A4) hold for g(w) = w/λ0. Furthermore, δ|g(W)| ≤ 2/λ0, as
n−1/2|W | ≤ 1.

By Chen [15], Lemma 1, there exist constants C0,C1 > 0 such that∣∣R(W)
∣∣ ≤ C0n

−1/2(
W 2 + 1

)
,(5.37)

and ∣∣∣∣ 1

2λ
E

((
W − W ′)2 | W ) − 1

∣∣∣∣ ≤ C1n
−1/2(|W | + 1

)

and |K̂1| = �2

2λ
≤ 4/L2(m0). Therefore, (2.7)–(2.10) are satisfied with τ1 = 1, τ2 = 2, δ1 =

δ2 = O(1)n−1/2 and d0 = 4/L2(m0) and d1 = 2/λ0.

It suffices to prove (2.20)–(2.21). By (5.37), we have for |W | ≤
√

n
2λ0C0

,

∣∣R(W)
∣∣ ≤ 1

2

(∣∣g(W)
∣∣ + 1

)
,(5.38)

and for |W | >
√

n
2λ0C0

, recalling that |W | ≤ 1, we have |R(W)| ≤ C0(
√

n + 1). Then, (2.20)

holds with α = 1/2, d2 = C0(
√

n + 1) and κ = √
n/(2λ0C0). By Chen [15], Lemma 2, when

(J,h) /∈  ∪ {(Jc, hc)}, for any u > 0, there exists a constant η > 0 such that

P
(∣∣m(σ) − m0

∣∣ ≥ u
) ≤ Ce−nη

for some constant C. Hence,

d2P
(|W | > κ

) ≤ C(
√

n + 1)e−nη.
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Note that s0 = max{s : δsg2(s) ≤ 1}, g(w) = w/λ0, d1 = 2
λ0

and δ = 2n−1/2, then s0 =
(λ0/2)1/3n1/6. Therefore, (2.21) is satisfied. By Remark 2.2, we have

P(W > z)

P(Z0 > z)
= 1 + O(1)n−1/2(

1 + z3)
for 0 ≤ z ≤ n1/6.

Case 2. When (J,h) = (Jc, hc). Define W = n−3/4(M − nmc) and W ′ = n−3/4(M ′ −
nmc); then, (W,W ′) is an exchangeable pair. By (5.35), we have

E
(
W − W ′|W ) = n−3/4(

L1
(
m(σ)

) + R1
(
m(σ)

))
.

By Chen [15], page 14, we have

L1(mc) = L′
1(mc) = L′′

1(mc) = 0, L
(3)
1 (mc) = λc

2
L2(mc),

where λc is given in (3.8). Then, by the Taylor expansion, we have

L1
(
m(σ)

) = L
(3)
1 (mc)

6

(
m(σ) − mc

)3 + 1

6

∫ m(σ)

mc

L
(4)
1 (s)

(
m(σ) − s

)3
ds.

Then, taking λ = L2(mc)/(2n3/2), by Chen [15], Lemma 1, we have

E
(
W − W ′ | W ) = λ

(
g(W) + R(W)

)
,

where g(W) = (λc/6)W 3 and

R(W) = n3/4

2L2(mc)

∫ m(σ)

m0

L
(4)
1 (s)

(
m(σ) − mc

)3
ds + 2n3/4

L2(mc)
R1(W).

Hence, G(w) = λc

24w4. Based again on Chen [15], Lemma 1, for some constant C, we have∣∣R(W)
∣∣ ≤ Cn−1/4(|W |4 + 1

) ≤ Cn−1/4(∣∣g(W)
∣∣4/3 + 1

)
,(5.39)

and ∣∣∣∣ 1

2λ
E

((
W − W ′)2 | W ) − 1

∣∣∣∣ ≤ Cn−1/4(∣∣g(W)
∣∣1/3 + 1

)
.

As |W − W ′| ≤ 2n−3/4 and |W | ≤ Cn1/4, it follows that there exist constants d0 and d1
such that n−3/4|g(W)| ≤ d1 and K̂1 = (W − W ′)2/(2λ) ≤ d0. Thus, (2.9) and (2.10) are
satisfied. Furthermore, (2.7) and (2.8) hold with δ = 2n−3/4, δ1 = δ2 = O(1)n−1/4 and τ1 =
1/3, τ2 = 4/3. It suffices to show that (2.20) and (2.21) are satisfied. By (5.39), there exists a
constant c > 0 such that for |W | ≤ cn1/4,

∣∣R(W)
∣∣ ≤ 1

2

(∣∣g(W)
∣∣ + 1

)
.

For |W | ≥ cn1/4, noting that |W | ≤ Cn1/4, we have |R(W)| ≤ Cn3/4. Thus, (2.20) is satisfied
with α = 1/2, d2 = Cn3/4 and κ = cn1/4. Furthermore, as δ = 2n−3/4 and g(w) = (λc/6)w3,
we have s0 = (18/λc)

1/7n3/28. In addition, by Chen [15], Lemma 2, when (J,h) = (Jc, hc),
for any u > 0, there exists a constant η > 0 such that

P
(∣∣m(σ) − mc

∣∣ ≥ u
) ≤ Ce−nη.

Thus,

d2P
(|W | ≥ κ

) ≤ Cn3/4e−nη ≤ Ce−2s0d
−1
1 δ−1

.

Then, (2.21) holds. By Remark 2.2, we complete the proof of Theorem 3.2. �
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