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1 Introduction

Let W := Wn be a sequence of random variables of interest. Since the exact distribution of W is usually

unknown, it would be interesting to find out the limiting distribution. There are several approaches to

solve this problem. The classical method is to calculate the characteristic function, which may not be

easy to do. Another approach is to use the Stein method. Stein’s method was first introduced by [18] for

normal approximation. The method is striking because it can deal with not only independent random

variables but also dependent random variables and it can also provide an accuracy of the approximation.

Stein’s idea and method have been extended to various approximation far beyond the normal approxima-

tion, for example, to Poisson approximation by Chen [5], to diffusion approximation by Barbour [1], to

Gamma approximation by Luk [15], to multivariate normal approximation by Barbour [1], and Meckes

and Meckes [16]. We refer to [6] for a thorough coverage of Stein methods fundamentals and recent

developments in both theory and applications. We also refer to [2] for a short survey on Stein’s method.

By using the exchangeable pair approach of Stein’s method, Chatterjee and Shao [4] provided a con-

crete method to identify the limiting distribution of W under certain conditions. Let (W,W ′) be an

exchangeable pair and Δ = W −W ′. Assume that there exist λ > 0, measurable functions g(w), r1(w)

and r2(w) such that

E(Δ | W ) = λ(g(W ) + r1(W )) (1.1)
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and

E(Δ2 | W ) = 2λ(1 + r2(W )). (1.2)

Let G(t) =
∫ t

0 g(s)ds, p(t) = c0 exp(−G(t)), where c0 = 1/
∫∞
−∞ e−G(t)dt. Under some regular assumptions

on g(w), Chatterjee and Shao [4] showed that if E(|r1(W )|+ |r2(W )|+ |Δ|3/λ) → 0, then W
d.→ Y, where

Y has the probability density function p(t).

Assumption (1.2) implies that the conditional second moment of Δ, given W , satisfies a law of large

numbers. However, this may not be true in general. The main purpose of this note is to find the limiting

distribution of W without the assuming condition (1.2).

The paper is organized as follows. The next section presents the main results. In Section 3, an

application to Curie-Weiss model at the critical temperature is discussed with a Berry-Esseen type bound

of O(n−3/4). Section 4 provides some basic properties of Stein’s equation and solution, while the proof

of the main results is postponed to Section 5.

2 Main results

Let (W,W ′) be an exchangeable pair and Δ = W −W ′. Assume that there exist λ > 0 and measurable

functions g(w), v(w) � 0, r1(w) and r2(w) such that

E[Δ |W ] = λ(g(W ) + r1(W )) (2.1)

and

E[Δ2 |W ] = 2λ(v(W ) + r2(W )). (2.2)

It is well known that conditional expected value and the conditional second moment of Δ, given W , must

be a measurable function of W . So Conditions (2.1) and (2.2) are always satisfied.

Let Y be a random variable with the probability density function

p(w) =
1

c1v(w)
exp(−Q(w)), w ∈ (a, b), (2.3)

where Q(w) =
∫ w

w0
q(t)dt, w0 satisfies g(w0) = 0, q(t) = g(t)/v(t) and c1 is the normalizing constant.

Assume v(a+)p(a+) = v(b−)p(b−) = 0.

To present our main results, we first introduce some assumptions on the functions g and v. Assume that

(B1) There exist constants α � 1 and β � 0 such that for w0 � x � y < b

|g(x)| � αg(y) + β, (2.4)

and a < y � x � w0,

|g(x)| � −αg(y) + β. (2.5)

(B2) There exists a constant c2 � c1 max{1,E[v(Y )]} such that the equations

c2g(x) = 1, c2g(x) = v(x) (2.6)

have at most one solution on (w0, b) and the equations

c2g(x) = −1, c2g(x) = −v(x) (2.7)

have at most one solution on (a, w0).

(B3) There exists an interval [l, u] ⊂ (a, b) such that on (a, w0), v(x) is non-decreasing or infx∈(a,l) v(x)

� c3, on (w0, b), v(x) is non-increasing or infx∈(u,b) v(x) � c3. Moreover, ‖v′‖ = supx∈(a,b) |v′(x)| � c4.

(B4) There exists a constant c5 � 1 such that

max{1, |g′(y)|}min{c2, (α+ 1)(α+ βc2)/|g(y)|}(|y|+ E|Y |+ c2) � c5. (2.8)
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Remark 2.1. If g and g/v are non-decreasing on (a, b) with (w −w0)g(w) � 0, then Conditions (B1)

and (B2) are satisfied with α = 1 and β = 0.

We are now ready to identify the limiting distribution of W .

Theorem 2.2. Let (W,W ′) be an exchangeable pair satisfying (2.1), (2.2) and the conditions (B1)

–(B4). If

E|r1(W )|+ E|r2(W )|+ E|Δ3/(λv(W ))| → 0, (2.9)

then W converges to Y in distribution.

The next theorem gives an L1 bound for the approximation.

Theorem 2.3. Let (W,W ′) be as defined in Theorem 2.2. Then for ‖h′‖ < ∞, we have

|E[h(W )]− E[h(Y )]| � C‖h′‖
(
E|r1(W )|+ E|r2(W )|+ 1

λ
E[|Δ|3/v(W )]

)
, (2.10)

where C is a finite constant depending on w0, c1, . . . , c5, α and β.

When Δ is bounded, we can also give the Berry-Esseen bound for the approximation. Assume that

|Δ| � δ. (2.11)

Also assume that

(B5) The interval (a, b) can be partitioned by three parts, I1, I2 and I3 and there exists a constant δ1
such that

E sup
|t|�δ

∣∣∣∣ 1

v(W + t)

∣∣∣∣1(W ∈ I1 ∪ I3) � δ1. (2.12)

Moreover, v is absolutely continuous and there exist constants c6 and c7 such that

sup
|t|�δ

sup
x∈I2

∣∣∣∣ 1

v(x+ t)

∣∣∣∣ � c6, sup
|t|�δ

sup
x∈I2

|v′(x+ t)| � c7. (2.13)

We have the following Berry-Essen type inequality:

Theorem 2.4. Assume that (2.1), (2.2), (2.11) and Conditions (B1), (B2), (B4) and (B5) are satisfied.

Then

sup
z∈(a,b)

|P(W � z)− P(Y � z)|

� 2c2E|r1(W )|+ E

∣∣∣∣r2(W )

v(W )

∣∣∣∣+ 2(α+ βc2 + 1)δ2δ1
λ

+ (‖p‖+ 2c5/c2)δ

+
δ3

λ
((α + βc2)c

2
6c7 + c5c6/c2 + c5c6E|g(W )|+ c26(α + 1 + βc2)E|g(W )|). (2.14)

3 Application to Curie-Weiss model

Consider the Curie-Weiss model for n-spins σ = (σ1, . . . , σn) ∈ {−1, 1}n at temperature T . The joint

density function of σ is given by

1

ZT
exp

(∑
1�i<j�n σiσj

Tn

)
, (3.1)

where ZT is the normalizing constant. For the critical temperature T = 1, let

W = W (σ) = n−3/4
n∑

i=1

σi. (3.2)
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This is a simple statistical mechanical model of ferromagnetic interaction, also called the Ising model on

the complete graph. For a detailed mathematical treatment of this model, we refer to the book by [8].

It was proved by [9–11] that as n → ∞, the law of W converges to the distribution with density

proportional to e−x4/12 and Chatterjee and Shao [4] obtained a Berry-Esseen bound of O(n−1/2). For

various interesting extensions and refinements of their results, one can refer to [12, 17].

In this section, we shall prove that the Berry-Essen bound can be improved to O(n−3/4) when the

“limiting distribution” is allowed to depend on n, which in turn also shows that the result obtained by

Chatterjee and Shao [4] is optimal.

We first construct W ′ so that (W,W ′) is an exchangeable pair. Let I be a uniformly distributed

random index over {1, . . . , n}. For each i, given σj , j �= i, 1 � j � n, let σ′
i be independent of σi and have

the same conditional distribution as σi. Set W
′ = W (σ1, . . . , σI−1, σ

′
I , σI+1, . . . , σn). Then (W,W ′) is an

exchangeable pair. The following lemma verifies various conditions in Theorems 2.3 and 2.4.

Lemma 3.1. Let Δ = W −W ′. We have,

E[Δ |W ] =
1

3
n−3/2W 3 − n−2W +O(n−5/2)(1 +W 5), (3.3)

E[Δ2 |W ] = 2n−3/2max{1− n−1/2W 2, n−1}+O(n−5/2)(1 +W 4), (3.4)

|W −W ′| � 2n−3/4 (3.5)

and

E|W |3 � 15. (3.6)

From this lemma, we can choose λ = n−3/2,

g(w) =
w3

3
− n−1/2w, v(w) = max{1− n−1/2w2, n−1},

|r1(w)| � An−1|w|3, |r2(w)| � An−1(1 + w4),

where A is an absolute constant.

Let

q(w) =
w3/3− n−1/2w

max{1− n−1/2w2, n−1} ,

Q(y) =

∫ y

0

q(w)dw, (3.7)

and Y be a random variable with the probability density function

p(y) =
1

c1v(y)
e−Q(y), y ∈ (−∞,∞), (3.8)

where c1 is the normalizing constant.

Theorem 3.2. We have for any absolutely continuous function h with ‖h′‖ < ∞,

|E[h(W )− h(Y )]| � C‖h′‖n−3/4 (3.9)

and

sup
z

|P(W � z)− P(Y � z)| � Cn−3/4, (3.10)

where C is an absolute constant.

Remark 3.3. From (3.10) and (3.7), we see that P(Y � z) involves a term of order n−1/2. This

indicates that the error bound of order O(n−1/2) given by Chatterjee and Shao [4] is optimal.
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Proof. By Theorems 2.3 and 2.4, it suffices to show that Conditions (B1)–(B5) are satisfied. It is easy

to see that for all 0 � x � y � n1/4, |g(x)| � g(y) + 1 and for 0 � x � y � −n1/4, |g(x)| � −g(y) + 1. It

is also not difficult to verify that Conditions (B2)–(B4) are satisfied.

As for (B5), we choose I1 = (−∞,−n1/4/
√
2), I2 = [−n1/4/

√
2, n1/4/

√
2] and I3 = (n1/4/

√
2,∞).

Recall that v(w) = max{1− n−1/2w2, n−1}, then for w ∈ I1 ∪ I3, |t| � δ, v(w + t) � n−1.

By [3, Proposition 4], for t � 0, P(|W | � t) � 2e−ct4, where c > 0 is an absolute constant, we have by

integration by parts,

E

[
sup
|t|�δ

∣∣∣∣ 1

v(W + t)

∣∣∣∣ · 1(n−1/2W 2 > 1/2)

]

� nP(W 2 > n1/2/2) + n

∫ ∞

n1/2/2

P(W 2 � y)dy

� Cn−3/4.

Similarly, we can prove that

E

∣∣∣∣ 1

v(W )

∣∣∣∣ � C, E|r1(W )| � Cn−1, E|r2(W )| � Cn−1 and E

∣∣∣∣r2(W )

v(W )

∣∣∣∣ � Cn−1

for some absolute constant C. One can also check that ‖p‖ � C for some constant C. This completes

the proof.

We now turn to the proof of Lemma 3.1.

Proof of Lemma 3.1. Let

M = n−1
n∑

i=1

σi, Mi = n−1
∑
j �=i

σi.

Thus |M | � 1 and |W | � n−1/4.

Let F be the sigma filed generated by σ. By [4], we have

E[Δ | F ] = n−3/4M − n−7/4
n∑

i=1

tanhMi

= n−3/4M − n−7/4
n∑

i=1

(
Mi − M3

i

3
+O(1)M5

i

)

= n−3/2

(
W 3

3
− n−1/2W +O(n−1)(1 + |W |5)

)
. (3.11)

This proves (3.3).

By [4] again, we have

E[Δ2 | F ] = 2n−3/2 − 2n−5/2
n∑

i=1

σi tanhMi

= 2n−3/2 − 2n−5/2
n∑

i=1

σi

(
Mi − M3

i

3
+O(1)M5

i

)

= 2n−3/2(1− n−1W 2 +O(n−1(1 +W 4)))

= 2n−3/2 max{1− n−1W 2, n−1}+O(n−5/2(1 +W 4)). (3.12)

The inequalities (3.5) and (3.6) follows directly from [4]. This completes the proof of Lemma 3.1.
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4 Properties of the Stein solution

In this section, we will recall or prove some basic properties of the Stein solution, mainly following the

arguments in [4]. We start with the Stein equation.

Let Y be a random variable with the probability density function (2.3). For any absolutely continuous

function f , one can show that

E[v(Y )f ′(Y )] = E[g(Y )f(Y )]. (4.1)

For a given measureable function h, let fh be the solution to the following Stein equation:

v(w)f ′(w) − g(w)f(w) = h(w) − E[h(Y )], w ∈ (a, b). (4.2)

It is known that the solution fh can be expressed as for w ∈ (a, b),

fh(w) =
1

v(w)p(w)

∫ w

a

(h(t)− E[h(Y )])p(t)dt

= − 1

v(w)p(w)

∫ b

w

(h(t)− E[h(Y )])p(t)dt. (4.3)

Equation (4.2) has also been discussed in [7,13,14], where an error bound of certain distances (but not

including L1 distance) of beta distribution approximation were obtained. Theorem 2.3 provides an L1

bound for general non-normal approximation.

Lemma 4.1. Assume that (B4) is satisfied and δ > 0 with (c5/c2)δ � 1/2. Then we have

sup
|t|�δ

|g(w + t)− g(w)| � 2(c5/c
2
2)δ + 2(c5/c2)δ|g(w)|. (4.4)

Proof. From (2.8) it follows that

|g′(w)| � (c5/c2)(1/c2 + |g(x)|). (4.5)

Thus by the mean value theorem,

sup
|t|�δ

|g(w + t)− g(w)| � δ sup
|t|�δ

|g′(w + t)|

� c5
c2
δ(1/c2 + |g(w + t)|)

� (c5/c
2
2)δ + (c5/c2)δ|g(w)|+ (c5/c2)δ sup

|t|�δ

|g(w + t)− g(w)|

� (c5/c
2
2)δ + (c5/c2)δ|g(w)|+ 1

2
sup
|t|�δ

|g(w + t)− g(w)| .

This yields (4.4).

Lemma 4.2. Let ‖h‖ < ∞ and fh be the solution to the equation (4.2). Under Conditions (B1)–(B4),

we have

‖fh‖ � 2c2‖h‖, ‖fhg‖ � 2(α+ βc2)‖h‖. (4.6)

Proof. Recall that the solution to (4.2) is given by

fh(w) =
1

v(w)p(w)

∫ w

a

(h(t)− E[h(Y )])p(t)dt

= − 1

v(w)p(w)

∫ b

w

(h(t)− E[h(Y )])p(t)dt.



Shao Q-M et al. Sci China Math December 2016 Vol. 59 No. 12 2385

For w � w0, define

H(w) =

∫ w

a

p(t)dt− c2v(w)p(w)

and thus

H ′(w) = p(w)(1 + c2g(w)).

Since g(w0) = 0 and there exists at most one point w1 such that c2g(w1) + 1 = 0, H(w) achieves its

maximum at w0 or a. Note that H(a) � 0 by definition and

H(w0) � 1− c2/c1 � 0.

This gives H(w) � 0 for w ∈ (a, w0] and thus |fh(w)| � c2‖h‖. Similarly, we can prove fh(w) � c2‖h‖
on (w0, b).

Next, we will give the bound of ‖fhg‖. For w ∈ (w0, b), by (2.4),

|fh(w)g(w)| = |g(w)|eQ(w)

∫ b

w

1

v(t)
e−Q(t)dt

� αeQ(w)

∫ b

w

g(t)

v(t)
e−Q(t)dt+ βeQ(w)

∫ b

w

p(t)dt

� α+ βc2.

Similarly, for w ∈ (a, w0),

|fh(w)g(w)| � α+ βc2.

This completes the proof.

Lemma 4.3. Let fh be the solution given by (4.3). Assume that Conditions (B1)–(B4) are satisfied

and that h is absolutely continuous with ‖h′‖ < ∞. Then

‖fh‖ � c5‖h′‖, ‖f ′
h‖ � C‖h′‖, (4.7)

‖fhg′‖ � c5‖h′‖, ‖f ′
hg‖ � C‖h′‖, (4.8)

where C is a constant depending on α, β, c2, c3, c4 and c5.

Proof. Since h is absolutely continuous,

h(y)− E[h(Y )] =

∫ y

a

h′(t)F (t)dt−
∫ b

y

h′(t)(1 − F (t))dt.

By (4.3), we have

fh(y)v(y)p(y) =

∫ y

a

(h(t)− E[h(Y )])p(t)dt

= −(1− F (y))

∫ y

a

h′(t)F (t)dt − F (y)

∫ b

y

h′(t)(1 − F (t))dt. (4.9)

Hence,

|f(y)v(y)p(y)| � ‖h′‖
(
(1− F (y))

∫ y

a

F (t)dt+ F (y)

∫ b

y

(1− F (t))dt

)
. (4.10)

From (2.6), we know for y ∈ (w0, b),

1− F (y) � c2v(y)p(y)min{1, 1/|g(y)|}.
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By Condition (B2), we can similarly prove

∫ b

y

v(t)p(t)dt � c2v(y)p(y), for y ∈ (a, b).

Note that for y ∈ (w0, b),

∫ y

a

F (s)ds = yF (y)−
∫ y

a

tp(t)dt. (4.11)

Thus,

(1 − F (y))

∫ y

a

F (t)dt+ F (y)

∫ b

y

(1− F (t))dt

� min{c2, (α+ βc2)/|g(y)|}(|y|+ E|Y |)v(y)p(y) +
∫ b

y

min{c2, (α+ βc2)/|g(t)|}v(t)p(t)dt

� min{c2, (α+ βc2)/|g(y)|}(|y|+ E|Y |)v(y)p(y) + min{c2, α(α + βc2)/(|g(y)| − β)}
∫ b

y

v(t)p(t)dt,

where we used (2.4) in the last line. When |g(y)| − β � α2/c2 + αβ, we have min{c2, α(α + βc2)/(|g(y)|
− β)} = c2. Otherwise, |g(y)| � (α + 1)β and thus

α(α+ βc2)/(|g(y)| − β) � (α + 1)(α+ βc2)/|g(y)|.

Hence, we can rewrite these terms above as

(1− F (y))

∫ y

a

F (t)dt+ F (y)

∫ b

y

(1− F (t))dt

� min{c2, (α+ βc2)/|g(y)|}(|y|+ E|Y |)v(y)p(y)
+ min{c2, (α+ 1)(α+ βc2)/|g(y)|}c2v(y)p(y). (4.12)

Hence, by (2.8), for y ∈ (w0, b),

max{1, |g′(y)|}
(
(1− F (y))

∫ y

a

F (t)dt + F (y)

∫ b

y

(1− F (t))dt

)

� v(y)p(y)max{1, g′(y)}min{c2, (α+ 1)(α+ βc2)/|g(y)|}(|y|+ E|Y |+ c2)

� c5v(y)p(y). (4.13)

Similarly, for y ∈ (a, w0),

max{1, |g′(y)|}
(
(1− F (y))

∫ y

a

F (t)dt + F (y)

∫ b

y

(1− F (t))dt

)
� c5v(y)p(y). (4.14)

By (4.10), (4.13) and (4.14), we have

‖fh‖ � c5‖h′‖, ‖fhg′‖ � c5‖h′‖. (4.15)

Next, we prove the second inequality of (4.7). By [7], we have

|f ′
h(y)| � ‖h′‖

(∫ y

a F (s)ds|G(y)| + ∫ b

y (1 − F (s))ds|H(y)|
v2(y)p(y)

)
, (4.16)

where

G(y) = v(y)p(y)− g(y)(1− F (y)), H(y) = v(y)p(y) + g(y)F (y).
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When y ∈ (w0, b) and if v is non-increasing,

∫ b

y

(1 − F (s))ds

∣∣∣∣1 + g(y)F (y)

v(y)p(y)

∣∣∣∣
� c2

∫ b

y

v(s)p(s)ds

∣∣∣∣1 + |g(y)|
v(y)p(y)

∣∣∣∣
� c2(1 + α+ βc2)v(y)

and thus
∫ b

y (1− F (s))ds|H(y)|
v2(y)p(y)

� c2(1 + α+ βc2). (4.17)

By (4.11),

∫ y

a
F (s)ds|G(y)|
v2(y)p(y)

� |y|G(y)

v2(y)p(y)
+

E|Y |G(y)

v2(y)p(y)
.

Recall that

v(y)p(y) = −
∫ y

a

g(t)p(t)dt =

∫ b

y

g(t)p(t)dt,

then

(|y|+ E|Y |)|G(y)|
v2(y)p(y)

=
(|y|+ E|Y |)∣∣ ∫ b

y
(g(t)− g(y))p(t)dt

∣∣
v2(y)p(y)

=
(|y|+ E|Y |)∣∣ ∫ b

y
g′(t)(1 − F (t))dt

∣∣
v2(y)p(y)

�
c2(|y|+ E|Y |) ∫ b

y
|g′(t)|v(t)p(t)dt

v2(y)p(y)

�
c2

∫ b

y |g′(t)|(|t|+ E|Y |)p(t)dt
v(y)p(y)

�
c5

∫ b

y (|g(t)|+ 1/c2)p(t)dt

v(y)p(y)

�
c5

∫ b

y (αg(t) + 1/c2 + β)p(t)dt

v(y)p(y)

� C,

where C is a constant depending on c2, c5, α and β. Therefore,

sup
y∈(w0,b)

∫ y

a
F (s)ds|G(y)|+ ∫ b

y
(1− F (s))ds|H(y)|

v2(y)p(y)
� C.

Similarly, we can also prove that if 1/v(y) � 1/c3 we have

sup
y∈(w0,b)

∫ y

a F (s)ds|G(y)|+ ∫ b

y (1− F (s))ds|H(y)|
v2(y)p(y)

� C.

For y ∈ (a, w0), if v(y) is non-decreasing or 1/v(y) � 1/c3, we also have

sup
y∈(a,w0)

∫ y

a
F (s)ds|G(y)| + ∫ b

y
(1 − F (s))ds|H(y)|

v2(y)p(y)
� C.
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This proves ‖f ′
h‖ � C‖h′‖.

Finally, we will give the bound of f ′
hg. From (4.2), we have

f ′′
h v − f ′

hg = h′ + g′fh − v′f ′
h.

Thus

(f ′
hvp)

′ = f ′′
h vp− f ′

hgp = h′p+ g′fhp− v′f ′
hp

and

|g(x)f ′
h(x)v(x)p(x)| =

∣∣∣∣g(x)
∫ x

a

(h′p)(t) + (g′fh)(t)− (v′f ′
hp)(t)dt

∣∣∣∣
=

∣∣∣∣g(x)
∫ b

x

(h′p)(t) + (g′fhp)(t)− (v′f ′
hp)(t)dt

∣∣∣∣
� C‖h′‖|g(x)|min{F (x), 1 − F (x)}
� C‖h′‖v(x)p(x).

This proves ‖f ′
hg‖ � C‖h′‖ where C is a constant.

Lemma 4.4. Let fh be the solution given by (4.3) and satisfy the conditions in Lemma 4.3. We have

|f ′
h(x+ t)− f ′

h(x)| � C‖h′‖|t|/v(x). (4.18)

Proof. Observe that

|f ′
h(x+ t)− f ′

h(x)|
=

∣∣∣∣fh(x+ t)g(x+ t)

v(x+ t)
− fh(x)g(x)

v(x)
+

h(x+ t)− E[h(Y )]

v(x+ t)
− h(x)− E[h(Y )]

v(x)

∣∣∣∣
� |fh(x+ t)g(x+ t) + h(x+ t)− Eh(Y )| ×

∣∣∣∣ 1

v(x + t)
− 1

v(x)

∣∣∣∣
+

1

v(x)
|fh(x + t)g(x+ t)− fh(x)g(x)| + 1

v(x)
|h(x + t)− h(x)|

=: L1 + L2 + L3.

We next give the bounds of L1, L2 and L3. For L1,∣∣∣∣ 1

v(x+ t)
− 1

v(x)

∣∣∣∣ � |v(x + t)− v(x)|
v(x)v(x + t)

� c4|t|
v(x+ t)v(x)

and by (4.6), we have

L1 � c4|f ′
h(x+ t)||t|
v(x)

� C‖h′‖|t|/v(x). (4.19)

For L2, it is easy to see

L2 �
(‖fhg′‖+ ‖f ′

hg‖)|t|
v(x)

� C‖h′‖|t|/v(x). (4.20)

Finally, for L3, we have L3 � ‖h′‖|t|/v(x). This proves the lemma.

5 Proof of main results

Theorem 2.2 is a direct consequence of Theorem 2.3.
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Proof of Theorem 2.3. Recall that Δ = W −W ′ and observe that

0 = E[(W −W ′)(f(W ) + f(W ′))]

= 2λE[f(W )g(W )] + 2λE[f(W )r1(W )]− E[Δ(f(W )− f(W ′))]

= 2E[f(W )E[Δ |W ]]− E

[
Δ

∫ 0

−Δ

f ′(W + t)dt

]

= 2λE[f(W )g(W )] + 2λE[f(W )r1(W )]− 2λE

[∫ ∞

−∞
f ′(W + t)K̂(t)dt

]
,

where K̂(t) = E[ Δ2λ (1(−Δ � t � 0)− 1(0 � t � −Δ)) |W ]. Therefore,

E[f(W )g(W )] = E

∫ ∞

−∞
f ′(W + t)K̂(t)dt− E[f(W )r1(W )]. (5.1)

By (2.2), we have

1

2λ
E[f ′(W )Δ2] = E[f ′(W )v(W )] + E[f ′(W )r2(W )]. (5.2)

Now for fh given in (4.3), by (5.1), (5.2), Lemmas 4.3 and 4.4, we have

|E[h(W )]− E[h(Y )]| = |E[v(W )f ′
h(W )− g(W )fh(W )]|

=

∣∣∣∣E[fh(W )r1(W )] − E[f ′
h(W )r2(W )]− E

∫ ∞

−∞
f ′(W + t)− f ′(W )dt

∣∣∣∣
� C‖h′‖

(
E|r1(W )|+ E|r2(W )|+ E

[
1

v(W )

∫ ∞

−∞
|t|K̂(t)dt

])

� C‖h′‖(E|r1(W )|+ E|r2(W )|+ E|Δ3/λv(W )|). (5.3)

This completes the proof.

Proof of Theorem 2.4. The inequality (2.14) is trivial if 2c5δ/c2 > 1. We assume that 2c5δ/c2 � 1

below. Now let h(W ) = 1(W � z). Assume that |Δ| � δ. By (5.1),

E[f(W )g(W ) + f(W )r1(W )] = E

[∫
|t|�δ

f ′(W + t)K̂(t)dt

]

= E

[∫
|t|�δ

f(W + t)q(W + t)K̂(t)dt

]

+ E

[ ∫
|t|�δ

(h(W + t)− E[h(Y )])K̂(t)

v(W + t)
dt

]
. (5.4)

Observe that

E

[∫
|t|�δ

(h(W + t)− E[h(Y )])K̂(t)

v(W + t)
dt

]
� E

[(
1(W � z − δ)− P(Y � z)

v(W )

)∫
|t|�δ

K̂(t)dt

]

−
∣∣∣∣E

[∫
|t|�δ

(
1

v(W )
− 1

v(W + t)

)
K̂(t)dt

]∣∣∣∣
� P(W � z − δ)− P(Y � z)− E

∣∣∣∣r2(W )

v(W )

∣∣∣∣
−
∣∣∣∣E

[∫
|t|�δ

(
1

v(W )
− 1

v(W + t)

)
K̂(t)dt

]∣∣∣∣. (5.5)

Then we have by (5.4),

P(W � z − δ)− P(Y � z) � E

[∫
|t|�δ

(f(W )q(W ) − f(W + t)q(W + t))K̂(t)dt

]
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+

∣∣∣∣E
[ ∫

|t|�δ

(
1

v(W )
− 1

v(W + t)

)
K̂(t)dt

]∣∣∣∣
+ 2c2E|r1(W )|+ E

∣∣∣∣r2(W )

v(W )

∣∣∣∣, (5.6)

where we used (4.6) in the last inequality.

We only need to obtain the bounds of the following two terms:

E

[∫
|t|�δ

(
1

v(W )
− 1

v(W + t)

)
K̂(t)dt

]
(5.7)

and

E

[∫
|t|�δ

(f(W )q(W )− f(W + t)q(W + t))K̂(t)dt

]
. (5.8)

For the term (5.7), we have

E

[∫
|t|�δ

(
1

v(W )
− 1

v(W + t)

)
K̂(t)dt

]

� δ2

λ
E

[
sup
|t|�δ

∣∣∣∣ 1

v(W + t)

∣∣∣∣1(W ∈ I1 ∪ I3)

]

+ E

[ ∫
|t|�δ

(
1

v(W )
− 1

v(W + t)

)
K̂(t)dt1(W ∈ I2)

]

� δ2δ1
λ

+
c26c7δ

3

4λ
.

As to (5.8), we first find the bound of sup|t|�δ | f(W+t)g(W+t)
v(W+t) − f(W )g(W )

v(W ) | · 1(x ∈ I2). Note that

∣∣∣∣f(W + t)g(W + t)

v(W + t)
− f(W )g(W )

v(W )

∣∣∣∣
�

∣∣∣∣f(W + t)g(W + t)

v(W + t)
− f(W + t)g(W + t)

v(W )

∣∣∣∣
+

∣∣∣∣f(W + t)g(W + t)

v(W )
− f(W + t)g(W )

v(W )

∣∣∣∣
+

∣∣∣∣f(W + t)g(W )

v(W )
− f(W )g(W )

v(W )

∣∣∣∣
=: J1 + J2 + J3.

Recalling that

sup
|t|�δ

sup
x∈I2

∣∣∣∣ 1

v(x+ t)

∣∣∣∣ � c6, sup
|t|�δ

sup
x∈I2

|v′(x+ t)| � c7,

we have

J1 � ‖fg‖c4|t|
v(W )v(W + t)

� c26c7‖fg‖|t|.

For J2, we have for x ∈ I2 and c5δ/c2 � 1/2,

sup
|t|�δ

|g(x+ t)− g(x)| � 2(c5/c
2
2)δ + 2(c5/c2)δ|g(w)|,

then J2 � 2(c5c6/c2)‖f‖δ(1/c2 + |g(W )|). For J3,
J3 � c6δ sup

|t|�δ

|f ′(W + t)g(W )|
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� c26(‖fg‖+ 1)δ|g(W )|.

Therefore, recalling that ‖f‖ � 2c2, ‖fg‖ � 2(α+ βc2) we have

E

[∫
|t|�δ

(f(W )q(W ) − f(W + t)q(W + t))K̂(t)dt · 1(W ∈ I2)

]

� δ3

λ
((α + βc2)c

2
6c7 + c5c6/c2 + c5c6E|g(W )|+ c26(α + 1+ βc2)E|g(W )|).

For (5.8), similarly we have

E

[∫
|t|�δ

(f(W )q(W )− f(W + t)q(W + t))K̂(t)dt

]

� E

[∫
|t|�δ

|f(W )q(W )− f(W + t)q(W + t)|K̂(t)dt1(W ∈ I1 ∪ I3)

]

+ E

[∫
|t|�δ

|f(W )q(W )− f(W + t)q(W + t)|K̂(t)dt1(W ∈ I2)

]

� ‖fg‖δ2
λ

E

[
sup
|t|�δ

∣∣∣∣ 1

v(W + t)

∣∣∣∣
]
+ E

[ ∫
|t|�δ

|f(W )q(W ) − f(W + t)q(W + t)|K̂(t)dt1(W ∈ I2)

]

� 2(α+ βc2)δ
2δ1

λ
+

δ3

λ
((α + βc2)c

2
6c7 + c5c6/c2 + c5c6E|g(W )|+ c26(α + 1 + βc2)E|g(W )|).

Therefore, combining those inequalities, we have

P(W � z − δ)− P(Y � z)

� 2c2E|r1(W )|+ E

∣∣∣∣r2(W )

v(W )

∣∣∣∣+ 2(α+ βc2 + 1)δ2δ1
λ

+
δ3

λ
((α+ βc2)c

2
6c7 + c5c6/c2 + c5c6E|g(W )|+ c26(α+ 1 + βc2)E|g(W )|). (5.9)

Moreover, P(z − δ � Y � z) � ‖p‖δ. Hence,

P(W � z − δ)− P(Y � z − δ)

� 2c2E|r1(W )|+ E

∣∣∣∣r2(W )

v(W )

∣∣∣∣+ 2(α+ βc2 + 1)δ2δ1
λ

+ ‖p‖δ

+
δ3

λ
((α+ βc2)c

2
6c7 + c5c6/c2 + c5c6E|g(W )|+ c26(α+ 1 + βc2)E|g(W )|).

Similarly,

P(Y � z + δ)− P(W � z + δ)

� 2c2E|r1(W )|+ E

∣∣∣∣r2(W )

v(W )

∣∣∣∣+ 2(α+ βc2 + 1)δ2δ1
λ

+ ‖p‖δ

+
δ3

λ
((α+ βc2)c

2
6c7 + c5c6/c2 + c5c6E|g(W )|+ c26(α+ 1 + βc2)E|g(W )|).

This completes the proof.
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