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Expectation of sums of random
variables
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Function of two random variables

■ We have known that, for a discrete random variable 𝑋 and a function 𝑔,

𝔼[𝑔(𝑋)] =
∑
𝑥∈𝒮

𝑔(𝑥)𝑝(𝑥).

■ How about 𝑔(𝑋, 𝑌 )?

Definition 1
Let (𝛺,ℱ,ℙ) be a probability space, on which there are two random variables 𝑋 and 𝑌 .
Let 𝑔 : ℝ ×ℝ → ℝ, then 𝑔(𝑋, 𝑌 ) is a random variable such that

𝑔(𝑋, 𝑌 )(𝜔) = 𝑔(𝑋 (𝜔), 𝑌 (𝜔)) for 𝜔 ∈ 𝛺.
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Expectation of 𝑔(𝑋, 𝑌 )

Proposition 2

If discrete random variables 𝑋 and 𝑌 have a joint probability mass function 𝑝(𝑥, 𝑦),
then for 𝑔 : ℝ2 → ℝ,

𝔼[𝑔(𝑋, 𝑌 )] =
∑
𝑦

∑
𝑥

𝑔(𝑥, 𝑦)𝑝(𝑥, 𝑦).

Example 3

Let 𝛺1 = {2, 3, 4, 5}, and let 𝛺2 = {2, 3, 4, 5}, and let 𝛺 = 𝛺1 × 𝛺2 =
{(2, 2), (2, 3), . . . , (5, 5)}. Let 𝑋 be the value of the first number and 𝑌 be that of the
second number. We have shown that 𝑋 and 𝑌 are independent. Let 𝑔(𝑥, 𝑦) = 𝑥 + 𝑦.
What is the pmf of 𝑔(𝑋, 𝑌 )?
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Proof.
Write 𝑍 = 𝑔(𝑋, 𝑌 ) = 𝑋 + 𝑌 . Note that

ℙ{𝑍 = 4} = ℙ{𝑋 = 2, 𝑌 = 2} = ℙ{(2, 2)} = 1
16

,

ℙ{𝑍 = 5} = ℙ{𝑋 = 2, 𝑌 = 3} + ℙ{𝑋 = 3, 𝑌 = 2}

= ℙ{(2, 3), (3, 2)} = 1
8
,

ℙ{𝑍 = 6} = ℙ{𝑋 = 2, 𝑌 = 4} + ℙ{𝑋 = 3, 𝑌 = 3} + ℙ{𝑋 = 4, 𝑌 = 2}

= ℙ{(2, 4), (3, 3), (4, 2)} = 3
16

,

...

ℙ{𝑍 = 10} = ℙ{𝑋 = 5, 𝑌 = 5} = ℙ{(5, 5)} = 1
16

. ■
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Expectation of 𝑔(𝑋, 𝑌 )

Proposition 4

If 𝑋 and 𝑌 are jointly continuous with pdf 𝑓 (𝑥, 𝑦), then

𝔼[𝑔(𝑋, 𝑌 )] =
∫ ∞

−∞

∫ ∞

−∞
𝑔(𝑥, 𝑦) 𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦.
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Proof.
We only give a proof when 𝑋 and 𝑌 are continuous. Note that

𝔼[𝑔(𝑋, 𝑌 )] =
∫ ∞

0
ℙ{𝑔(𝑋, 𝑌 ) > 𝑡}𝑑𝑡 −

∫ 0

−∞
ℙ{𝑔(𝑋, 𝑌 ) < 𝑡}𝑑𝑡 = 𝐼1 − 𝐼2.

For the first term 𝐼1,

ℙ{𝑔(𝑋, 𝑌 ) > 𝑡} =
∬

(𝑥,𝑦):𝑔 (𝑥,𝑦)>𝑡

𝑓 (𝑥, 𝑦)𝑑𝑦𝑑𝑥,

and thus

𝐼1 =
∫ ∞

0

∬
(𝑥,𝑦):𝑔 (𝑥,𝑦)>𝑡

𝑓 (𝑥, 𝑦)𝑑𝑦𝑑𝑥𝑑𝑡 =
∫ ∞

−∞

∫ ∞

−∞

∫ max{𝑔 (𝑥,𝑦) ,0}

0
𝑓 (𝑥, 𝑦)𝑑𝑡𝑑𝑦𝑑𝑥

=
∫ ∞

−∞

∫ ∞

−∞
max{𝑔(𝑥, 𝑦), 0} 𝑓 (𝑥, 𝑦)𝑑𝑦𝑑𝑥.

8



Similarly,

𝐼2 = −
∫ ∞

−∞

∫ ∞

−∞
min{𝑔(𝑥, 𝑦), 0} 𝑓 (𝑥, 𝑦)𝑑𝑦𝑑𝑥.

Therefore,

𝔼[𝑔(𝑋, 𝑌 )] = 𝐼1 − 𝐼2 =
∫ ∞

−∞

∫ ∞

−∞
(max{𝑔(𝑥, 𝑦), 0} − min{𝑔(𝑥, 𝑦), 0}) 𝑓 (𝑥, 𝑦)𝑑𝑦𝑑𝑥

=
∫ ∞

−∞

∫ ∞

−∞
𝑔(𝑥, 𝑦) 𝑓 (𝑥, 𝑦)𝑑𝑦𝑑𝑥

as desired. ■
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Examples

Example 5

An accident occurs at a point 𝑋 that is uniformly distributed on a road of length 𝐿.
At the time of the accident, an ambulance is at a location 𝑌 that is also uniformly
distributed on the road. Assuming that 𝑋 and 𝑌 are independent, find the expected
distance between the ambulance and the point of the accident.

Question
What we need to calculate?
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Solution.
We need to compute 𝔼[|𝑋 − 𝑌 |]. Since the joint density function of 𝑋 and 𝑌 is

𝑓 (𝑥, 𝑦) = 1
𝐿2 0 < 𝑥, 𝑦 < 𝐿,

it follows that

𝔼[|𝑋 − 𝑌 |] = 1
𝐿2

∫ 𝐿

0

∫ 𝐿

0
|𝑥 − 𝑦 |𝑑𝑦𝑑𝑥

=
𝐿

3
. ■

11



Expectation of 𝔼[𝑋 + 𝑌 ]

Proposition 6

For any random variables 𝑋 and 𝑌 and real numbers 𝑎 and 𝑏,

𝔼[𝑎𝑋 + 𝑏𝑌 ] = 𝑎𝔼[𝑋] + 𝑏𝔼[𝑌 ].

More generally,

𝔼[𝑎1𝑋1 + · · · + 𝑎𝑛𝑋𝑛] =
𝑛∑
𝑖=1

𝑎𝑖 𝔼[𝑋𝑖].
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Monotonicity

Proposition 7

If 𝑋 ⩾ 𝑌 a.s., then

𝔼[𝑋] ⩾ 𝔼[𝑌 ].
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Example 8 (Expectation of a binomial random variable)

Let 𝑋 be a binomial random variable with parameters 𝑛 and 𝑝. Let 𝑋1, . . . , 𝑋𝑛 be
defined as

𝑋𝑖 =

{
1 it the 𝑖th trial is a success

0 otherwise

Hence, 𝑋 = 𝑋1 + · · · + 𝑋𝑛. Note that

𝔼[𝑋𝑖] = 𝑝 for each 𝑖,

then

𝔼[𝑋] =
𝑛∑
𝑖=1

𝔼[𝑋𝑖] = 𝑛𝑝.
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Sample mean

Example 9

Let 𝑋1, . . . , 𝑋𝑛 be i.i.d. random variables having the distribution function 𝐹 and ex-
pected value 𝜇. Such a sequence of random variables is said to be a sample from
the distribution 𝐹. The quantity

𝑋 =
𝑛∑
𝑖=1

𝑋𝑖

𝑛

is called the sample mean. Compute 𝔼[𝑋].
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Boole’s inequality

Example 10

Let 𝐴1, . . . , 𝐴𝑛 denote events, and define the
indicator variable 𝑋𝑖 of 𝐴𝑖 by

𝑋𝑖 =

{
1 if 𝐴𝑖 occurs
0 otherwise

Let

𝑋 =
𝑛∑
𝑖=1

𝑋𝑖

be the number of the events 𝐴𝑖 that occur,
and let

𝑌𝑖 =

{
1 if 𝑋 ⩾ 1
0 otherwise

be the variable that indicates that at least
one of the 𝐴𝑖 occurs. Then, by the mono-
tonicity property,

𝔼[𝑌 ] ⩽ 𝔼[𝑋],

while

𝔼[𝑋] =
𝑛∑
𝑖=1

𝔼[𝑋𝑖] =
𝑛∑
𝑖=1

ℙ(𝐴𝑖)

and

𝔼[𝑌 ] = ℙ{at least one of 𝐴𝑖 occur}

= ℙ

( 𝑛⋃
𝑖=1

𝐴𝑖

)
.

16



Examples

Example 11 (Expected number of matches)

Suppose that 𝑁 people throw their hats into the center of a room. The hats are
mixed up, and each person randomly selects one. Find the expected number of
people that select their own hat.

Solution.
Let 𝑋 denote the number of matches, then

𝑋 = 𝑋1 + · · · + 𝑋𝑛,

where

𝑋𝑖 =

{
1 if the 𝑖th person selects his own hat,
0 otherwise.
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Examples

For each 𝑖, the 𝑖th person is equally likely to select any of the 𝑁 hats, then

𝔼[𝑋𝑖] = ℙ{𝑋𝑖 = 1} = 1
𝑁
.

Thus,

𝔼[𝑋] =
𝑁∑
𝑖=1

𝔼[𝑋𝑖] = 1. ■
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Examples

Example 12 (Coupon-collecting problems)

Suppose that there are 𝑁 different types of coupons, and each time one obtains a
coupon, it is equally likely to be any one of the 𝑁 types. Find the expected number
of coupons one need amass before obtaining a complete set of at least one of each
type.

Solution.
Let 𝑋 denote the number of coupons collected before a complete set is attained. Note that

𝑋 = 𝑋0 + · · · + 𝑋𝑁−1,

where 𝑋𝑖 is the number of additional coupons that need be obtained after 𝑖 distinct types
have been collected in order to obtain another distinct type. Then, a new coupon obtained
will be of a distinct type with probability (𝑁 − 𝑖)/𝑁.
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Examples

Therefore,

ℙ{𝑋𝑖 = 𝑘} = 𝑁 − 𝑖

𝑁

(
𝑖

𝑁

)𝑘−1
, or 𝑋𝑖 ∼ Geometric( 𝑁 − 𝑖

𝑁
).

Therefore, 𝔼[𝑋𝑖] = 𝑁
𝑁−𝑖 , and hence,

𝔼[𝑋] = 𝑁

𝑁
+ 𝑁

𝑁 − 1
+ · · · + 𝑁

1
→ 𝑁 log 𝑁 as 𝑁 → ∞. ■
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Covariance
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Products of independent random variables

Proposition 13

If 𝑋 and 𝑌 are independent, then, for any functions ℎ and 𝑔,

𝔼[𝑔(𝑋)ℎ(𝑌 )] = 𝔼[𝑔(𝑋)] 𝔼[ℎ(𝑌 )].

Proof.
Suppose that 𝑋 and 𝑌 are jointly continuous with density 𝑓 (𝑥, 𝑦). Then,

𝔼[𝑔(𝑋)ℎ(𝑌 )] =
∫ ∞

−∞

∫ ∞

−∞
𝑔(𝑥)ℎ(𝑦) 𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦

=
∫ ∞

−∞

∫ ∞

−∞
𝑔(𝑥)ℎ(𝑦) 𝑓𝑋 (𝑥) 𝑓𝑌 (𝑦)𝑑𝑥𝑑𝑦

= 𝔼[ℎ(𝑌 )] 𝔼[𝑔(𝑋)]. ■
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Covariance

Definition 14 (Covariance)
The covariance between 𝑋 and 𝑌 , denoted by Cov(𝑋, 𝑌 ) is defined by

Cov(𝑋, 𝑌 ) = 𝔼[(𝑋 − 𝔼[𝑋]) (𝑌 − 𝔼[𝑌 ])] = 𝔼[𝑋𝑌 ] − 𝔼[𝑋] 𝔼[𝑌 ].

Proposition 15

If 𝑋 and 𝑌 are independent, then

Cov(𝑋, 𝑌 ) = 0.

The inverse is not always correct.
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Example: uncorrelated but not independent

Example 16

Let 𝑋 and 𝑌 be defined as follows:

𝑋 =


1 with probability 1/3,
0 with probability 1/3,
−1 with probability 1/3,

𝑌 = 𝑋2.

Whether 𝑋 and 𝑌 are independent? Are they correlated?
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Example: uncorrelated but not independent

Solution.
To see whether 𝑋 and 𝑌 are correlated, we calculate the covariance between 𝑋 and 𝑌 . Note
that 𝔼[𝑋] = 0, 𝔼[𝑌 ] = 1, and 𝔼[𝑋𝑌 ] = 𝔼[𝑋3] = 0. Therefore,

Cov(𝑋, 𝑌 ) = 𝔼[𝑋𝑌 ] − 𝔼[𝑋] 𝔼[𝑌 ] = 0 − (0)(1) = 0.
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Example: uncorrelated but not independent

The joint distribution of 𝑋 and 𝑌 is given by
𝑋 = −1 𝑋 = 0 𝑋 = 1

𝑌 = 0 0 1/3 0
𝑌 = 1 1/3 0 1/3

Note that

ℙ{𝑋 = −1, 𝑌 = 0} = 0,

but

ℙ{𝑋 = −1} = 1
3
, ℙ{𝑌 = 0} = ℙ{𝑋 = 0} = 1

3
.

Therefore, 𝑋 is not independent of 𝑌 . ■
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More properties of covariance

Proposition 17

(i) Symmetry: Cov(𝑋, 𝑌 ) = Cov(𝑌, 𝑋).

(ii) Cov(𝑋, 𝑋) = Var(𝑋).

(iii) Cov(𝑎𝑋, 𝑏𝑌 ) = 𝑎𝑏Cov(𝑋, 𝑌 ).

(iv) Cov(𝑋1 + 𝑋2, 𝑌 ) = Cov(𝑋1, 𝑌 ) + Cov(𝑋2, 𝑌 ).

(v) For 𝑋1, . . . , 𝑋𝑛, 𝑌1, . . . , 𝑌𝑚 and 𝑎1, . . . , 𝑎𝑛, 𝑏1, . . . , 𝑏𝑚, we have

Cov(𝑎1𝑋1 + · · · + 𝑎𝑛𝑋𝑛, 𝑏1𝑌1 + · · · + 𝑏𝑚𝑌𝑚) =
𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑎𝑖𝑏 𝑗 Cov(𝑋𝑖, 𝑌𝑗).
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Examples

Example 18 (Sample mean and sample variance)

Let 𝑋1, . . . , 𝑋𝑛 be a sample from 𝐹 with mean 𝜇 and variance 𝜎2. Let

𝑋 = (𝑋1 + · · · + 𝑋𝑛)/𝑛

be the sample mean. The sample variance is defined as

𝑆2 =
1

𝑛 − 1

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)2.

Find Var(𝑋) and 𝔼[𝑆2].

28



Solution.
By (ii) and (v) of Proposition 17,

Var(𝑋) = Cov(𝑋, 𝑋) =
𝑛∑
𝑖=1

𝑛∑
𝑗=1

1
𝑛2 Cov(𝑋𝑖, 𝑋 𝑗) =

1
𝑛2

𝑛∑
𝑖=1

Cov(𝑋𝑖, 𝑋𝑖) =
𝜎2

𝑛
.

For 𝔼[𝑆2], we assume 𝜇 = 0 without loss of generality, observe that

𝔼[(𝑋𝑖 − 𝑋)2] = 𝔼[𝑋2
𝑖 ] − 2𝔼[𝑋𝑖𝑋] + 𝔼[𝑋2]

= 𝜎2 − 2
𝑛
𝜎2 + 1

𝑛
𝜎2 =

𝑛 − 1
𝑛

𝜎2.

Thus,

𝔼[𝑆2] = 1
𝑛 − 1

𝑛∑
𝑖=1

(
𝑛 − 1
𝑛

𝜎2
)
= 𝜎2. ■
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Examples

Example 19 (Binomial random variable)

Compute the variance of a binomial random variable 𝑋 with parameters 𝑛 and 𝑝.
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Sampling from a finite population

Example 20

Consider a set of 𝑁 people, each of whom has an opinion about a certain subject that
is measured by a real number 𝑣 that represents the person’s“strength of feeling”
about the subject. Let 𝑣𝑖 represent the strength of feeling of person 𝑖, 𝑖 = 1, ...𝑁.

Suppose that the quantities 𝑣𝑖, 𝑖 = 1, ..., 𝑁, are unknown and, to gather information,
a group of 𝑛 of the 𝑁 people is “randomly chosen without replacement”. If 𝑆
denotes the sum of the 𝑛 sampled values, determine its mean and variance.
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Solution.
For each person 𝑖, define an indicator variable 𝐼𝑖 to indicate whether or not that person is
included in the sample. Then,

𝑆 =
𝑁∑
𝑖=1

𝑣𝑖 𝐼𝑖.

Therefore,

𝔼[𝑆] =
𝑁∑
𝑖=1

𝑣𝑖 𝔼[𝐼𝑖], Var(𝑆) =
𝑁∑
𝑖=1

𝑣2
𝑖 Var(𝐼𝑖) + 2

∑
𝑖< 𝑗

𝑣𝑖𝑣 𝑗 Cov(𝐼𝑖, 𝐼 𝑗).

It suffices to find 𝔼[𝐼𝑖],Var(𝐼𝑖) and Cov(𝐼𝑖, 𝐼 𝑗).

32



Note that

𝔼[𝐼𝑖] = ℙ{the 𝑖th person is selected} = 𝑛

𝑁
,

𝔼[𝐼𝑖 𝐼 𝑗] = ℙ{both the 𝑖th and 𝑗th are selected} = 𝑛

𝑁

𝑛 − 1
𝑁 − 1

.

Then,

Var(𝐼𝑖) = 𝔼[𝐼2𝑖 ] − (𝔼[𝐼𝑖])2 =
𝑛

𝑁
−

(
𝑛

𝑁

)2
=

𝑛

𝑁

(
1 − 𝑛

𝑁

)
,

Cov(𝐼𝑖, 𝐼 𝑗) = 𝔼[𝐼𝑖 𝐼 𝑗] − 𝔼[𝐼𝑖] 𝔼[𝐼 𝑗] =
𝑛(𝑛 − 1)
𝑁 (𝑁 − 1) −

(
𝑛

𝑁

)2
= − 𝑛(𝑁 − 𝑛)

𝑁2(𝑁 − 1) .

Substituting these results to the proceeding equation gives the final result. ■
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Correlation

Definition 21 (Correlation)
The correlation of two random variables 𝑋 and 𝑌 , denoted by Cor(𝑋, 𝑌 ) or 𝜌(𝑋, 𝑌 ), is
defined as

Cor(𝑋, 𝑌 ) = Cov(𝑋, 𝑌 )√
Var(𝑋) Var(𝑌 )

.

How to understand correlation?
■ Correlation is a statistical measure that quantifies the strength and direction of the

linear relationship between two variables.

■ The value of 𝜌 ranges between -1 and 1, with a value of 0 indicating no linear rela-
tionship, a positive value indicating a positive linear relationship, and a negative value
indicating a negative linear relationship.
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The Cauchy–Schwarz inequality

Proposition 22

For any random variables 𝑋 and 𝑌 ,

|𝔼[𝑋𝑌 ] | ⩽
√
𝔼[𝑋2] 𝔼[𝑌2].

The equality holds if and only if 𝑋 = 𝑐𝑌 almost surely, or,

ℙ{𝑋 = 𝑐𝑌 } = 1 for some constant 𝑐.
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Properties of correlation

Proposition 23

For any random variables 𝑋 and 𝑌 ,

| Cor(𝑋, 𝑌 ) | ⩽ 1.

Moreover, Cor(𝑋, 𝑌 ) = 1 if and only if

ℙ

{
𝑋 − 𝔼[𝑋]
SD(𝑋) =

𝑌 − 𝔼[𝑌 ]
SD(𝑌 )

}
= 1;

and Cor(𝑋, 𝑌 ) = −1 if and only if

ℙ

{
𝑋 − 𝔼[𝑋]
SD(𝑋) = −𝑌 − 𝔼[𝑌 ]

SD(𝑌 )

}
= 1.
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Example

Example 24

If 𝑈 ∼ 𝑈 (0, 2𝜋), 𝑋 = cos(𝑈), and 𝑌 = cos(𝑈 + 𝑡). Find the correlation between 𝑋 and
𝑌 .
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Solution

Solution.
Note that

𝔼[𝑋] = 1
2𝜋

∫ 2𝜋

0
cos 𝑢𝑑𝑢 = 0, 𝔼[𝑋2] = 1

2𝜋

∫ 2𝜋

0
cos2 𝑢𝑑𝑢 =

1
2
.

Similarly,

𝔼[𝑌 ] = 0, 𝔼[𝑌2] = 1
2
.

For the covariance,

Cov(𝑋, 𝑌 ) = 𝔼[𝑋𝑌 ] − 0 =
1

2𝜋

∫ 2𝜋

0
cos 𝑢 cos(𝑢 + 𝑡)𝑑𝑢 =

1
2

cos 𝑡.
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Therefore,

𝜌 = Cor(𝑋, 𝑌 ) = cos 𝑡.

If 𝑡 = 0, then 𝜌 = 1, 𝑋 = 𝑌 . If 𝑡 = 𝜋, then 𝜌 = −1, 𝑋 = −𝑌 . In both cases, they have a
linear relation.
If 𝑡 = 𝜋/2 or 𝑡 = 3𝜋/2, then 𝜌 = 0, which means 𝑋 and 𝑌 are uncorrelated. However, since
𝑋2 + 𝑌2 = 1, it follows that 𝑋 and 𝑌 are not independent. ■
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Conditional expectation

40



Definition

Definition 25 (Contiditional expectation)
If 𝑋 and 𝑌 are jointly discrete random variables, then the conditional expectation of 𝑋 given
that 𝑌 = 𝑦, for all values of 𝑦 such that 𝑝𝑌 (𝑦) > 0, by

𝔼[𝑋 |𝑌 = 𝑦] =
∑
𝑥

𝑥𝑝𝑋 |𝑌 (𝑥 |𝑦).
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Example 26

If 𝑋 and 𝑌 are independent binomial random variables with identical parameters 𝑛
and 𝑝, calculate 𝔼[𝑋 |𝑋 + 𝑌 = 𝑚].

Solution.
We first calculate the conditional pmf of 𝑋 given that 𝑋 + 𝑌 = 𝑚:

ℙ{𝑋 = 𝑘 |𝑋 + 𝑌 = 𝑚}

=
ℙ{𝑋 = 𝑘, 𝑋 + 𝑌 = 𝑚}

ℙ{𝑋 + 𝑌 = 𝑚} =
ℙ{𝑋 = 𝑘, 𝑌 = 𝑚 − 𝑘}

ℙ{𝑋 + 𝑌 = 𝑚}

=

(𝑛
𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘

( 𝑛
𝑚−𝑘

)
𝑝𝑚−𝑘 (1 − 𝑝)𝑛−𝑚+𝑘(2𝑛

𝑚

)
𝑝𝑚 (1 − 𝑝)2𝑛−𝑚

=

(𝑛
𝑘

) ( 𝑛
𝑚−𝑘

)(2𝑛
𝑚

) .
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Therefore,

𝔼[𝑋 |𝑋 + 𝑌 = 𝑚] =
(
2𝑛
𝑚

)−1 min(𝑛,𝑚)∑
𝑘=0

𝑘

(
𝑛

𝑘

) (
𝑛

𝑚 − 𝑘

)
=

𝑚

2
. ■
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Conditional expectation

Definition 27
If 𝑋 and 𝑌 are jointly continuous with PDF 𝑓 (𝑥, 𝑦), then the conditional expectation of 𝑋
given 𝑌 = 𝑦 is defined by

𝔼[𝑋 |𝑌 = 𝑦] =
{∫ ∞

−∞ 𝑥 𝑓𝑋 |𝑌 (𝑥, 𝑦)𝑑𝑥 𝑓𝑌 (𝑦) > 0,
0 otherwise.
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Example 28

Suppose that the joint density of 𝑋 and 𝑌 is given by

𝑓 (𝑥, 𝑦) = 𝑒−𝑥/𝑦−𝑦

𝑦
, 0 < 𝑥, 𝑦 < ∞.

Compute 𝔼[𝑋 |𝑌 = 𝑦].
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Solution.
The conditional density is, for 𝑦 > 0,

𝑓𝑋 |𝑌 (𝑥 |𝑦) =
𝑓 (𝑥, 𝑦)
𝑓𝑌 (𝑦)

=
𝑦−1𝑒−𝑥/𝑦−𝑦∫ ∞

0 (1/𝑦)𝑒−𝑥/𝑦−𝑦𝑑𝑥

=
(1/𝑦)𝑒−𝑥/𝑦∫ ∞

0 (1/𝑦)𝑒−𝑥/𝑦𝑑𝑥
=

1
𝑦
𝑒−𝑥/𝑦.
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Therefore,

𝔼[𝑋 |𝑌 = 𝑦] =
∫ ∞

0

1
𝑦
𝑥𝑒−𝑥/𝑦𝑑𝑦

= 𝑦. ■

Remark
For the sake of simplicity, if 𝔼[𝑋 |𝑌 = 𝑦] = ℎ(𝑦) for some function ℎ, then we can write
𝔼[𝑋 |𝑌 ] = ℎ(𝑌 ). Generally, 𝔼[𝑋 |𝑌 ] is always a function of 𝑌 , and hence it is a random
variable.
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Further properties

Proposition 29

Let 𝑔 be a real-valued function, then

𝔼[𝑔(𝑋) |𝑌 = 𝑦] =

∑
𝑥

𝑔(𝑥)𝑝𝑋 |𝑌 (𝑥 |𝑦) in the discrete case∫ ∞

−∞
𝑔(𝑥)𝑝𝑋 |𝑌 (𝑥 |𝑦)𝑑𝑥 in the continuous case

Moreover, for 𝑋1, . . . , 𝑋𝑛 and real numbers 𝑎1, . . . , 𝑎𝑛,

𝔼

[
𝑛∑
𝑖=1

𝑋𝑖

�����𝑌 = 𝑦

]
=

𝑛∑
𝑖=1

𝔼[𝑋𝑖 |𝑌 = 𝑦].
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Least Squares (最小二乘法)

■ Conditional expectation plays an important role in prediction.

■ Assume that we have two random variables 𝑋 and 𝑌 .

■ For example, assume that we want to know whether there is a relation between the
speed and stopping distance in the car dataset.

■ Say, 𝑌 means the speed of a car, and 𝑋 means the stopping distance.

■ Assume that there is a relation 𝑌 = 𝑔(𝑋) + 𝜀, where 𝜀 means the measurement error,
which is independent of 𝑋 .

■ We want to find a function ℎ such that

ℎ = arg min
𝑔

𝔼[{𝑌 − 𝑔(𝑋)}2].
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Regression

Proposition 30

For any random vector (𝑋, 𝑌 ), let

ℎ(𝑥) = 𝔼[𝑌 |𝑋 = 𝑥].

Then, for any function 𝑔,

𝔼[(𝑌 − ℎ(𝑋))2] ⩽ 𝔼[(𝑌 − 𝑔(𝑋))2].

In other words, ℎ(𝑥) = 𝔼[𝑌 |𝑋 = 𝑥] minimizes the loss function 𝐿(𝑔) = 𝔼[(𝑌 − 𝑔(𝑋))2].
We call ℎ(𝑥) = 𝔼[𝑌 |𝑋 = 𝑥] is the regression function.
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Total expectation

■ Define 𝔼[𝑋 |𝑌 ] as a random variable which is a function of 𝑌 whose value at 𝑌 = 𝑦 is
𝔼[𝑋 |𝑋 = 𝑦].

■ For example, if 𝔼[𝑋 |𝑌 = 𝑦] = ℎ(𝑦), then 𝔼[𝑋 |𝑌 ] = ℎ(𝑌 ).

■ An important property of conditional expectation is the following:

Proposition 31 (Total expectation formula)

We have

𝔼[𝑋] = 𝔼
[
𝔼[𝑋 |𝑌 ]

]
=

∫ ∞

−∞
𝔼[𝑋 |𝑌 = 𝑦] 𝑓𝑌 (𝑦)𝑑𝑦.
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Examples

Example 32

A miner is trapped in a mine contain-
ing 3 doors where there are no differ-
ences from the appearance. The first
door leads to a tunnel that will take him
to safety after 3 hours of travel. The
second door leads to a tunnel that will
return him to the mine after 5 hours of
travel. The third door leads to a tunnel
that will return him to the mine after 7

hours. If we assume that the miner is
at all times equally likely to choose any
one of the doors, what is the expected
length of time until he reaches safety?
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Solution.
Let 𝑋 denote the amount of time (in hours) until the miner reaches safety, and let 𝑌 denote
the door he initially chooses. Now,

𝔼[𝑋] = 𝔼[𝑋 |𝑌 = 1] ℙ{𝑌 = 1} + 𝔼[𝑋 |𝑌 = 2] ℙ{𝑌 = 2} + 𝔼[𝑋 |𝑌 = 3] ℙ{𝑌 = 3}

=
1
3
(
𝔼[𝑋 |𝑌 = 1] + 𝔼[𝑋 |𝑌 = 2] + 𝔼[𝑋 |𝑌 = 3]

)
,

and

𝔼[𝑋 |𝑌 = 1] = 3, 𝔼[𝑋 |𝑌 = 2] = 5 + 𝔼[𝑋], 𝔼[𝑋 |𝑌 = 3] = 7 + 𝔼[𝑋].

Hence, 𝔼[𝑋] = 15. ■
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Expectation of sums of random variables

Example 33

Suppose that the number of people entering a department store on a given day is a
random variable with mean 50. Suppose further that the amounts of money spent
by these customers are independent random variables having a common mean of
$8. Finally, suppose also that the amount of money spent by a customer is also
independent of the total number of customers who enter the store. What is the
expected amount of money spent in the store on a given day?
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Solution.
If we let 𝑁 denote the number of customers that enter the store and 𝑋𝑖 the amount spent
by the 𝑖th such customer, then the total amount of money spent can be expressed as ∑𝑁

𝑖=1 𝑋𝑖.
Now,

𝔼

[ 𝑁∑
𝑖=1

𝑋𝑖

]
= 𝔼

[
𝔼

[ 𝑁∑
𝑖=1

𝑋𝑖

���𝑁] ]
,

and

𝔼
[ 𝑛∑
𝑖=1

𝑋𝑖 |𝑁 = 𝑛
]
= 𝔼

[ 𝑛∑
𝑖=1

𝑋𝑖

]
(by the independence of 𝑋𝑖 and 𝑁)

= 𝑛𝔼[𝑋],

which implies that

𝔼

[ 𝑁∑
𝑖=1

𝑋𝑖

]
= 𝔼[𝑁 𝔼[𝑋]] = 𝔼[𝑁] 𝔼[𝑋] = 50 × 8 = 400. ■
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Example 34

Independent trials, each resulting in a success with probability 𝑝, are successively
performed. Let 𝑁 be the time of the first success. Find Var(𝑁).

Solution.
To calculate Var(𝑁), we need to find 𝔼[𝑁] and 𝔼[𝑁2]. We have known that 𝔼[𝑁] = 1/𝑝,
so it suffices to compute 𝔼[𝑁2].
Let 𝑌 = 1 if the first trial is a success and 𝑌 = 0 otherwise. Then,

𝔼[𝑁2 |𝑌 = 1] = 1 (because 𝑁 = 1 if 𝑌 = 1)
𝔼[𝑁2 |𝑌 = 0] = 𝔼[(1 + 𝑁)2],
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and thus

𝔼[𝑁2] = 𝔼[𝑁2 |𝑌 = 1] ℙ{𝑌 = 1} + 𝔼[𝑁2 |𝑌 = 0] ℙ{𝑌 = 0}
= 1 · 𝑝 + (1 + 𝔼[2𝑁 + 𝑁2]) (1 − 𝑝)

= 𝑝 + 2(1 − 𝑝)
𝑝

+ (1 − 𝑝) 𝔼[𝑁2], (because 𝔼[𝑁] = 1/𝑝)

therefore,

𝔼[𝑁2] = 2 − 𝑝

𝑝2 , Var(𝑁) = 𝔼[𝑁2] − (𝔼[𝑁])2 =
1 − 𝑝

𝑝2 . ■
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Computing probabilities by conditioning

■ Suppose that we want to calculate ℙ(𝐸), which is not easy to compute.

■ However, we find another random variable 𝑌 , such that ℙ(𝐸 |𝑌 = 𝑦) is known.

Proposition 35

We have

ℙ(𝐸) =
{∑

𝑦 ℙ(𝐸 |𝑌 = 𝑦)𝑝𝑌 (𝑦) if 𝑌 is discrete∫ ∞
−∞ ℙ(𝐸 |𝑌 = 𝑦) 𝑓𝑌 (𝑦)𝑑𝑦 if 𝑌 is continuous
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Example 36 (The best-prize problem)

Suppose that we are to be presented
with 𝑛 distinct prizes, in sequence. After
being presented with a prize, we must
immediately decide whether to accept
it or to reject it and consider the next
prize. The only information we are given
when deciding whether to accept a prize
is the relative rank of that prize com-
pared to ones already seen. That is,
for instance, when the fifth prize is pre-
sented, we learn how it compares with
the four prizes we’ve already seen. Sup-

pose that once a prize is rejected, it is
lost, and that our objective is to maxi-
mize the probability of obtaining the best
prize. Assuming that all 𝑛! orderings of
the prizes are equally likely, how well
can we do?
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Solution.
Fix a value 𝑘, where 0 ⩽ 𝑘 < 𝑛, and consider the strategy that rejects the first 𝑘 prizes
and then accepts the first one that is better than all of those first 𝑘. Let ℙ𝑘 (𝐴) denote
the probability that the best prize is selected when this strategy is employed. To compute
the probability, conditional on 𝑋 (the position of the best prize ),

ℙ𝑘 (𝐴) =
𝑛∑
𝑖=1

ℙ𝑘 (𝐴 |𝑋 = 𝑘) ℙ{𝑋 = 𝑖} = 1
𝑛

𝑛∑
𝑖=1

ℙ𝑘 (𝐴 |𝑋 = 𝑖).

Now, if 𝑖 ⩽ 𝑘, then ℙ𝑘 (𝐴 |𝑋 = 𝑖) = 0. On the other hand, if 𝑖 > 𝑘,

ℙ𝑘 (𝐴 |𝑋 = 𝑖) = ℙ{best of first 𝑖 − 1 is among the first 𝑘 |𝑋 = 𝑖} = 𝑘

𝑖 − 1
.
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Solution (Cont’d).
From the preceding, we obtain

ℙ𝑘 (𝐴) =
𝑘

𝑛

𝑛∑
𝑖=𝑘+1

1
𝑖 − 1

≈ 𝑘

𝑛
log

(
𝑛

𝑘

)
.

To maximize the probability, we choose 𝑘 = 𝑛/𝑒, and it follows that, in this case,

ℙ𝑘 (𝐴) ≈
1
𝑒
≈ 0.36788. ■

62



Examples

Example 37

Let 𝑈 be a uniform random variable on (0, 1), and suppose that the conditional
distribution of 𝑋, given that 𝑈 = 𝑝, is binomial with parameters 𝑛 and 𝑝. Find the
probability mass function of 𝑋.
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Solution.
Conditioning on 𝑈 gives

ℙ{𝑋 = 𝑖} =
∫ 1

0
ℙ{𝑋 = 𝑖 |𝑈 = 𝑢} 𝑓𝑈 (𝑢)𝑑𝑢

=
∫ 1

0
ℙ{𝑋 = 𝑖 |𝑈 = 𝑢}𝑑𝑢

=
𝑛!

𝑖!(𝑛 − 𝑖)!

∫ 1

0
𝑢𝑖 (1 − 𝑢)𝑛−𝑖𝑑𝑢 =

𝑛!
𝑖!(𝑛 − 𝑖)!

𝛤(𝑖 + 1)𝛤(𝑛 − 𝑖 + 1)
𝛤(𝑛 + 2)

=
1

𝑛 + 1
, 𝑖 = 0, . . . , 𝑛. ■
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Example 38

Suppose that 𝑋 and 𝑌 are independent continuous random variables having densi-
ties 𝑓𝑋 and 𝑓𝑌 , respectively. Compute ℙ{𝑋 < 𝑌 }.

Solution.
Conditioning on 𝑌 yields

ℙ{𝑋 < 𝑌 } =
∫ ∞

−∞
ℙ{𝑋 < 𝑌 |𝑌 = 𝑦} 𝑓𝑌 (𝑦)𝑑𝑦

=
∫ ∞

−∞
ℙ{𝑋 < 𝑦} 𝑓𝑌 (𝑦)𝑑𝑦

=
∫ ∞

−∞

∫ 𝑦

−∞
𝑓𝑋 (𝑥) 𝑓𝑌 (𝑦)𝑑𝑥𝑑𝑦. ■
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Conditional variance

Definition 39
The conditional variance of 𝑋 given that 𝑌 = 𝑦 is defined as

Var(𝑋 |𝑌 ) = 𝔼[(𝑋 − 𝔼[𝑋 |𝑌 ])2 |𝑌 ].

Remark
We have

Var(𝑋 |𝑌 ) = 𝔼[𝑋2 |𝑌 ] − (𝔼[𝑋 |𝑌 ])2.
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Total variance formula

Proposition 40

We have

Var(𝑋) = 𝔼[Var(𝑋 |𝑌 )] + Var(𝔼[𝑋 |𝑌 ]).

Example 41 (Sum of a random number of random variables)

Let 𝑋1, 𝑋2, . . . be a sequence of independent and identically distributed random vari-
ables with mean 𝜇 and variance 𝜎2, and let 𝑁 be a nonnegative integer-valued ran-
dom variable that is independent of all others. Find Var(∑𝑁

𝑖=1 𝑋𝑖).
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Solution.
Condition on 𝑁:

𝔼

[
𝑁∑
𝑖=1

𝑋𝑖

����� 𝑁
]
= 𝑁 𝔼[𝑋] = 𝑁𝜇,

Var
(

𝑁∑
𝑖=1

𝑋𝑖

����� 𝑁
)
= 𝑁 Var(𝑋) = 𝑁𝜎2.

Then,

Var
(

𝑁∑
𝑖=1

𝑋𝑖

)
= 𝔼

[
Var

(
𝑁∑
𝑖=1

𝑋𝑖

����� 𝑁
)]

+ Var
(
𝔼

[ 𝑁∑
𝑖=1

𝑋𝑖

����𝑁])
= 𝔼[𝜎2𝑁] + Var(𝜇𝑁) = 𝜎2 𝔼[𝑁] + 𝜇2 Var(𝑁). ■
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Moment generating function
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Defintion

Definition 42
The moment generating function 𝑀 : ℝ → ℝ of the random variable 𝑋 is defined as

𝑀 (𝑡) = 𝔼[𝑒𝑡𝑋 ] for all 𝑡 ∈ ℝ.

Remark (Why it is called moment generating function?)
Note that

𝑀′(𝑡) = 𝑑

𝑑𝑡
𝔼[𝑒𝑡𝑋 ]

= 𝔼

[
𝑑

𝑑𝑡
(𝑒𝑡𝑋 )

]
(We assume that 𝔼 and 𝑑/𝑑𝑡 can be interchanged)

= 𝔼[𝑋𝑒𝑡𝑋 ].

Then, 𝑀′(0) = 𝔼[𝑋]. Similarly, 𝑀′′(0) = 𝔼[𝑋2], and so on.
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Binomial distribution

Proposition 43

If 𝑋 ∼ Binomial(𝑛, 𝑝), then

𝑀 (𝑡) = (𝑝𝑒𝑡 + 1 − 𝑝)𝑛.

Proof.

𝑀 (𝑡) = 𝔼[𝑒𝑡𝑋 ]

=
𝑛∑

𝑘=0
𝑒𝑡𝑘

(
𝑛

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘

= (𝑝𝑒𝑡 + 1 − 𝑝)𝑛. ■
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Exponential distribution

Proposition 44

If 𝑋 ∼ Exp(𝜆), then

𝑀 (𝑡) = 𝔼[𝑒𝑡𝑋 ]

=
∫ ∞

0
𝑒𝑡𝑥𝜆𝑒−𝜆𝑥𝑑𝑥

=
𝜆

𝜆 − 𝑡
for 𝑡 < 𝜆.

We note from this derivation that, for the exponential distribution, 𝑀 (𝑡) is defined only
for 𝑡 < 𝜆.
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Normal distribution

Proposition 45

If 𝑋 ∼ 𝑁 (𝜇, 𝜎2), then

𝑀 (𝑡) = 𝑒𝜇𝑡−
𝜎2𝑡2

2 .
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Properties of moment generating functions

Proposition 46

If 𝑋 and 𝑌 are independent, then

𝑀𝑋+𝑌 (𝑡) = 𝑀𝑋 (𝑡)𝑀𝑌 (𝑡).
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One-to-one

Proposition 47

The moment generating function uniquely determines the distribution.

Example 48

If 𝑀𝑋 (𝑡) = (1/2)10(𝑒𝑡 + 1)10, then

𝑋 ∼ Binomial(10, 1
2
).

If 𝑀𝑌 (𝑡) = 1
1−𝑡 for 𝑡 < 1, then 𝑌 ∼ Exp(1).
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Joint moment generating function

Definition 49
For any two random variables 𝑋 and 𝑌 , the joint moment generating function 𝑀 (𝑠, 𝑡) of
(𝑋, 𝑌 ) is defined as

𝑀 (𝑠, 𝑡) = 𝔼[𝑒𝑠𝑋+𝑡𝑌 ].
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Proposition 50

We have

𝑀𝑋 (𝑠) = 𝑀 (𝑠, 0).

Random variables 𝑋 and 𝑌 are independent, if and only if

𝑀 (𝑠, 𝑡) = 𝑀𝑋 (𝑠)𝑀𝑌 (𝑡).
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Examples

Example 51

If 𝑋 and 𝑌 are i.i.d. from 𝑁 (𝜇, 𝜎2). Find the joint distribution of 𝑋 + 𝑌 and 𝑋 − 𝑌 .

Solution.
Let 𝑀 be the moment generating function of 𝑁 (𝜇, 𝜎2). Note that

𝔼[𝑒𝑠(𝑋+𝑌 )+𝑡 (𝑋−𝑌 ) ] = 𝔼[𝑒(𝑠+𝑡)𝑋+(𝑠−𝑡)𝑌 ]
= 𝑀 (𝑠 + 𝑡)𝑀 (𝑠 − 𝑡)
= 𝑒2𝜇𝑠+𝜎2𝑠2𝑒𝜎

2𝑡2

which is the product of the moment generating functions of 𝑁 (2𝜇, 2𝜎2) and 𝑁 (0, 2𝜎2).
Therefore, 𝑋 + 𝑌 ∼ 𝑁 (2𝜇, 2𝜎2) and 𝑋 − 𝑌 ∼ 𝑁 (0, 2𝜎2) are independent. ■
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Further reading

[1] Sheldon M. Ross (谢尔登・M.罗斯).

A first course in probability (概率论基础教程): Chapter 7.

10th edition (原书第十版),机械工业出版社
[2] Sheldon M. Ross (谢尔登・M.罗斯).

Introduction to Probability Models (概率模型导论): Chapter 3.

12th edition (原书第十二版),人民邮电出版社
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