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Joint distribution functions
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Introduction

■ We have been considering one-variate random variables.

■ How to study the distributions of two random variables 𝑋 and 𝑌?

■ How to study their relationships?
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Definition of random vectors

𝑥

𝑦 Value space: ℝ2
Sample space: 𝛺

(𝑋 (𝜔), 𝑌 (𝜔))

𝜔

𝑌 (𝜔)

𝑋 (𝜔)
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Definition of random vectors

Definition 1
Let (𝛺,ℱ,ℙ) be a probability space. We say (𝑋, 𝑌 ) is a 2-dimensional random vector, or
a bivariate random variable if 𝜔 ↦→ (𝑋 (𝜔), 𝑌 (𝜔)) is a function valued on ℝ2.

Example 2 (Some examples)

■ Let 𝛺 = {all students at SUSTech}, and 𝑋 (𝜔) = height of 𝜔, 𝑌 (𝜔) = age of 𝜔.

■ Let 𝛺 = {all products in a supermarket}, and 𝑋 (𝜔) = price of 𝜔, 𝑌 (𝜔) =
date of manufacture of 𝜔.

■ Can you give some examples?
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𝑝-dimensional random vectors

Definition 3
Generally, we say (𝑋1, 𝑋2, . . . , 𝑋𝑝) is a 𝑝-variate random variable, or a 𝑝-dimensional ran-
dom vector, if 𝜔 ↦→ (𝑋1(𝜔), 𝑋2(𝜔), . . . , 𝑋𝑝(𝜔)) is a 𝑝-dimensional function on ℝ𝑝.

Remark
In the following part of this note, we will focus on the bivariate random variables without
further announcement.
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Joint distribution functions

■ For any two random variables 𝑋 and 𝑌 , the joint distribution function of 𝑋 and 𝑌 is
defined by

𝐹(𝑥, 𝑦) = ℙ{𝑋 ⩽ 𝑥, 𝑌 ⩽ 𝑦}, −∞ < 𝑥, 𝑦 < ∞.

𝑥

𝑦

(𝑥, 𝑦)

ℙ{𝑋 ⩽ 𝑥, 𝑌 ⩽ 𝑦}
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Properties of 𝐹(𝑥, 𝑦)

Proposition 4

Denote by 𝐹𝑋 and 𝐹𝑌 the distribution functions of 𝑋 and 𝑌 , respectively. We have

𝐹𝑋 (𝑥) = 𝐹(𝑥,∞), 𝐹𝑌 (𝑦) = 𝐹(∞, 𝑦).

The distribution functions 𝐹𝑋 and 𝐹𝑌 are sometimes referred to as the marginal dis-
tribution.
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Properties of 𝐹(𝑥, 𝑦)

Proposition 5

For any 𝑥 and 𝑦,

ℙ{𝑋 > 𝑥, 𝑌 > 𝑦} = 1 − 𝐹𝑋 (𝑥) − 𝐹𝑌 (𝑦) + 𝐹(𝑥, 𝑦).
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Joint mass function

■ If 𝑋 and 𝑌 are both discrete random variables, the joint probability mass function of 𝑋
and 𝑌 is defined as

𝑝(𝑥, 𝑦) = ℙ{𝑋 = 𝑥, 𝑌 = 𝑦}.

■ The marginal probability mass function of 𝑋 can be obtained by

𝑝𝑋 (𝑥) = ℙ{𝑋 = 𝑥} =
∑

𝑦:𝑝(𝑥,𝑦)>0
𝑝(𝑥, 𝑦).

■ Similarly,

𝑝𝑌 (𝑦) = ℙ{𝑌 = 𝑦} =
∑

𝑥:𝑝(𝑥,𝑦)>0
𝑝(𝑥, 𝑦).

10



Examples

Example 6

Suppose that 3 balls are randomly selected from an urn containing 3 red, 4 white,
and 5 blue balls. If we let 𝑋 and 𝑌 denote, respectively, the number of red and
white balls chosen, find the joint mass function of (𝑋, 𝑌 ).

Solution.
Let 𝑋 and 𝑌 denote the number of red and white balls chosen, respectively, then the joint
probability mass function of 𝑋 and 𝑌 is given by

𝑝(0, 0) = ℙ{𝑋 = 0, 𝑌 = 0} =
(5
3
)(12

3
) =

10
220

≈ 0.0455,

...

■
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Solution

The pmf of (𝑋, 𝑌 ) can be listed in the following table:

𝑋 = 𝑖
𝑌 = 𝑗 0 1 2 3 Row sum = ℙ{𝑋 = 𝑖}

0 0.0455 0.1818 0.1364 0.0182 0.3819
1 0.1364 0.2727 0.0818 0 0.4909
2 0.0682 0.0545 0 0 0.1227
3 0.0045 0 0 0 0.0045

Column sum = ℙ{𝑌 = 𝑗} 0.2546 0.5090 0.2182 0.0182 1

Table: Joint pmf of random variables 𝑋 and 𝑌
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Properties of joint pmf

Proposition 7

Joint pmf 𝑝(𝑥, 𝑦) has the following basic properties:
(a) Non-negativity: 𝑝(𝑥, 𝑦) ⩾ 0;

(b) Normalization: ∑
𝑥

∑
𝑦

𝑝(𝑥, 𝑦) = 1.
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Examples

Example 8

Let 𝑋 be a number uniformly chosen from 1, 2, 3, 4, and let 𝑌 be a number uniformly
chosen from 1, 2, . . . , 𝑋. Find the joint pmf of (𝑋, 𝑌 ) and find ℙ(𝑋 = 𝑌 ).
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Jointly continuous random variables

Definition 9
𝑋 and 𝑌 are said to be jointly continuous if
there exists a function 𝑓 : ℝ × ℝ → ℝ⩾0
such that for every 𝐷 ⊂ ℝ2,

ℙ{(𝑋, 𝑌 ) ∈ 𝐷} =
∬

(𝑥,𝑦) ∈𝐷

𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦.

The function 𝑓 (𝑥, 𝑦) is called the joint prob-
ability density function of 𝑋 and 𝑌 .

𝐷

𝑥

𝑦

𝑧

𝑓 (𝑥, 𝑦)
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Properties

■ In particular, if 𝐷 = 𝐴 × 𝐵, that is, 𝐷 = {(𝑥, 𝑦) : 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}, we have

ℙ{𝑋 ∈ 𝐴, 𝑌 ∈ 𝐵} =
∫
𝐵

(∫
𝐴
𝑓 (𝑥, 𝑦)𝑑𝑥

)
𝑑𝑦.

■ The joint distribution function is given by

𝐹(𝑥, 𝑦) = ℙ{𝑋 ⩽ 𝑥, 𝑌 ⩽ 𝑦} =
∫ 𝑦

−∞

∫ 𝑥

−∞
𝑓 (𝑢, 𝑣)𝑑𝑢𝑑𝑣.

■ It follows that

𝑓 (𝑥, 𝑦) = 𝜕2

𝜕𝑥𝜕𝑦
𝐹(𝑥, 𝑦).

■ Moreover, if 𝛥𝑎 and 𝛥𝑏 are small,

ℙ{𝑎 < 𝑋 < 𝑎 + 𝛥𝑎, 𝑏 < 𝑌 < 𝑏 + 𝛥𝑏} ≈ 𝑓 (𝑎, 𝑏)𝛥𝑎𝛥𝑏.
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𝑥

𝑦

(𝑎, 𝑏)

(𝑎 + 𝛥𝑎, 𝑏 + 𝛥𝑏)

𝛥𝑎

𝛥𝑏

𝑎 𝑎 + 𝛥𝑎

𝑏
𝑏 + 𝛥𝑏

𝐷

𝑓 (𝑥, 𝑦)
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Properties

Joint pdf has the following properties:
(a) Non-negativity: 𝑓 (𝑥, 𝑦) ⩾ 0 almost everywhere;

(b) Normalization: ∫ ∞

−∞

∫ ∞

−∞
𝑓 (𝑥, 𝑦)𝑑𝑦𝑑𝑥 = 1.
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Marginal density of continuous random vectors

Proposition 10

If 𝑋 and 𝑌 are jointly continuous with joint pdf 𝑓 (𝑥, 𝑦), then they are individually
continuous, and their pdf are given as follows:

𝑓𝑋 (𝑥) =
∫ ∞

−∞
𝑓 (𝑥, 𝑦)𝑑𝑦, 𝑓𝑌 (𝑦) =

∫ ∞

−∞
𝑓 (𝑥, 𝑦)𝑑𝑥.
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Examples

Example 11

The joint density function of 𝑋 and 𝑌 is
given by

𝑓 (𝑥, 𝑦) =
{

2𝑒−𝑥−2𝑦 0 < 𝑥, 𝑦 < ∞
0 otherwise

Compute
(a) ℙ{𝑋 > 1, 𝑌 < 1};

(b) ℙ{𝑋 < 𝑌 };

(c) ℙ{𝑋 < 𝑎} for some 𝑎 > 0. 𝑥

𝑦

𝑧
𝑓 (𝑥, 𝑦) = 2𝑒−𝑥−2𝑦
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Solution.
(a) We have

ℙ{𝑋 > 1, 𝑌 < 1} =
∫ 1

0

(∫ ∞

1
2𝑒−𝑥−2𝑦𝑑𝑥

)
𝑑𝑦

=
∫ 1

0
2𝑒−2𝑦

(∫ ∞

1
𝑒−𝑥𝑑𝑥

)
𝑑𝑦

= 𝑒−1
∫ 1

0
2𝑒−2𝑦𝑑𝑦

= 𝑒−1(1 − 𝑒−2) ≈ 0.3181.
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(b) We have
ℙ{𝑋 < 𝑌 }

=
∬

(𝑥,𝑦):𝑥<𝑦

2𝑒−𝑥−2𝑦𝑑𝑥𝑑𝑦

=
∫ ∞

0

(∫ 𝑦

0
2𝑒−𝑥−2𝑦𝑑𝑥

)
𝑑𝑦

=
∫ ∞

0
(2𝑒−2𝑦) (1 − 𝑒−𝑦)𝑑𝑦

=
∫ ∞

0
2𝑒−2𝑦𝑑𝑦 −

∫ ∞

0
2𝑒−3𝑦𝑑𝑦

= 1 − 2
3

=
1
3
.

𝑥

𝑦

𝑧

The region 𝑥 < 𝑦

𝑓 (𝑥, 𝑦) = 2𝑒−𝑥−2𝑦
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(c) For any 𝑎 > 0,

ℙ{𝑋 < 𝑎} =
∫ 𝑎

0

(∫ ∞

0
2𝑒−𝑥−2𝑦𝑑𝑦

)
𝑑𝑥

=
∫ 𝑎

0
𝑒−𝑥𝑑𝑥

= 1 − 𝑒−𝑎. ■
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Examples

Example 12

Let 𝑋 and 𝑌 follow the joint density function
given by

𝑓 (𝑥, 𝑦) =
{
𝑐 if 𝑥2 + 𝑦2 ⩽ 𝑅2

0 otherwise

for some value of 𝑐.
(a) Determine 𝑐.

(b) Find the marginal density functions of 𝑋
and 𝑌 .

(c) Let 𝐷 be the distance between (0, 0) and
(𝑋, 𝑌 ). Compute ℙ{𝐷 ⩽ 𝑎}.

(d) Find 𝔼[𝐷].

𝑥
𝑦

𝑧

𝑅

𝑐
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Solution.
(a) Because ∫ ∞

−∞
𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 1,

it follows that

𝑐

∬
𝑥2+𝑦2⩽𝑅2

= 1 =⇒ 𝑐 =
1

𝜋𝑅2 . ■
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Solution.
(b) Observe that if |𝑥 | ⩽ 𝑅,

𝑓𝑋 (𝑥) =
∫ ∞

−∞
𝑓 (𝑥, 𝑦)𝑑𝑦

=
1

𝜋𝑅2

∫ √
𝑅2−𝑥2

−
√
𝑅2−𝑥2

𝑑𝑦

=
2
√
𝑅2 − 𝑥2

𝜋𝑅2 ,

and 𝑓𝑋 (𝑥) = 0 if |𝑥 | > 𝑅.
By symmetry,

𝑓𝑌 (𝑦) =


2
√
𝑅2 − 𝑦2

𝜋𝑅2 if |𝑥 | ⩽ 𝑅,

0 otherwise.
■
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Solution.
(c) For any 0 ⩽ 𝑧 ⩽ 𝑅,

ℙ{𝐷 ⩽ 𝑧} = ℙ{
√
𝑋2 + 𝑌2 ⩽ 𝑧}

= ℙ{𝑋2 + 𝑌2 ⩽ 𝑧2}

=
∬

(𝑥,𝑦):𝑥2+𝑦2⩽𝑧2

𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦

=
𝜋𝑧2

𝜋𝑅2 =
𝑧2

𝑅2 .

For 𝑧 > 𝑅, ℙ{𝐷 ⩽ 𝑧} = 1. ■
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Solution.
(d) From (c), we have

𝑓𝐷 (𝑧) =
2𝑧
𝑅2 0 ⩽ 𝑎 ⩽ 𝑅.

Hence,

𝔼[𝐷] =
∫ 𝑅

0

2𝑧2

𝑅2 𝑑𝑧 =
2𝑅
3

. ■
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Examples

Example 13

Assume that (𝑋, 𝑌 ) has the following pdf

𝑓 (𝑥, 𝑦) =
{

1 0 < 𝑥 < 1, |𝑦 | < 𝑥,

0 otherwise.

Find
(a) the marginal density of 𝑋 and 𝑌 , respectively;

(b) ℙ(𝑋 < 1/2);

(c) ℙ(𝑌 > 1/2).
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Question

If we are given the marginal distributions of 𝑋 and 𝑌 , can we determine
the joint distribution of (𝑋, 𝑌 )?
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Examples

Example 14

The following two joint densities have same marginal distributions:

𝑓 (𝑥, 𝑦) =
{
𝑥 + 𝑦 0 ⩽ 𝑥, 𝑦 ⩽ 1,
0 otherwise.

and

𝑔(𝑥, 𝑦) =
{
(0.5 + 𝑥)(0.5 + 𝑦) 0 ⩽ 𝑥, 𝑦 ⩽ 1,
0 otherwise.
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Independent random variables
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Independence of random variables

■ We have already defined independence of events:

ℙ(𝐸 ∩ 𝐹) = ℙ(𝐸) ℙ(𝐹).

■ For two random variables 𝑋 and 𝑌 , if the behavior of 𝑋 does not affect the distribution of
𝑌 , or verse versa, we can also say that 𝑋 and 𝑌 are “independent”.
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Definition 15
Let (𝛺,ℱ,ℙ) be a probability space, on which defining two random variables 𝑋 and 𝑌 ,
respectively. We say 𝑋 and 𝑌 are independent if

{𝑋 ∈ 𝐴} is independent of {𝑌 ∈ 𝐵} for all 𝐴, 𝐵 ⊂ ℝ.

Remark
In particular, for all 𝑥, 𝑦 ∈ ℝ,

ℙ{𝑋 ⩽ 𝑥, 𝑌 ⩽ 𝑦} = ℙ{𝑋 ⩽ 𝑥}ℙ{𝑌 ⩽ 𝑦}.
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Properties

Proposition 16

If 𝑋 and 𝑌 are jointly discrete random variables with joint pmf 𝑝(𝑥, 𝑦), then the
following two arguments are equivalent:

(i) 𝑋 and 𝑌 are independent.

(ii) 𝑝(𝑥, 𝑦) = 𝑝𝑋 (𝑥)𝑝𝑌 (𝑦) for all 𝑥, 𝑦 ∈ ℝ.

If 𝑋 and 𝑌 are jointly continuous random variables with joint pdf 𝑓 (𝑥, 𝑦), then the
following are equivalent:

(i) 𝑋 and 𝑌 are independent.

(ii) 𝑓 (𝑥, 𝑦) = 𝑓𝑋 (𝑥) 𝑓𝑌 (𝑦) for all 𝑥, 𝑦 ∈ ℝ.
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Example 17 (Poker cards)

Suppose there are two piles of cards: { 2♠ , 3♠ , 4♠ , 5♠ } and { 2r , 3r , 4r , 5r }. We randomly
select one card from each pile, and let 𝑋 be the card value of ♠, and let 𝑌 be the
card value of r.
Are 𝑋 and 𝑌 independent?

Solution.
The sample space if 𝛺 = {( 2♠ , 2r ), ( 2♠ , 3r ), . . . , ( 5♠ , 5r )} containing 16 elements. Let ℱ be
the power set of 𝛺, and ℙ is the classical probability. Then,

ℙ{𝑋 = 2} = ℙ{( 2♠ , 2r ), ( 2♠ , 3r ), ( 2♠ , 4r ), ( 2♠ , 5r )} =
4
16

=
1
4
,

and similarly, ℙ{𝑋 = 𝑖} = ℙ{𝑌 = 𝑗} = 1/4 for all 2 ⩽ 𝑖, 𝑗 ⩽ 5. Moreover, for any 2 ⩽ 𝑖, 𝑗 ⩽ 5,
we have ℙ{𝑋 = 𝑖, 𝑌 = 𝑗} = 1/16. Then, 𝑋 and 𝑌 are independent. ■
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Examples

Example 18

Suppose that 𝑋 and 𝑌 are jointly discrete random variables with marginal distribu-
tion as follows:

𝑋 −1 0 1

𝑝𝑋 1/4 1/2 1/4
and

𝑌 0 1

𝑝𝑌 1/2 1/2

If ℙ{𝑋𝑌 = 0} = 1, find
(a) the joint pmf of 𝑋 and 𝑌 ,

(b) whether 𝑋 and 𝑌 are independent?
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Examples

Example 19

Suppose that 𝑋 and 𝑌 are independent continuous random variables with pdf 𝑓𝑋 and
𝑓𝑌 , respectively. Find the distribution functions of 𝑍 = max(𝑋, 𝑌 ) and 𝑊 = min(𝑋, 𝑌 ).

Solution.
The cdf of 𝑍 is

𝐹𝑍 (𝑧) = ℙ(max(𝑋, 𝑌 ) ⩽ 𝑧)
= ℙ{𝑋 ⩽ 𝑧, 𝑌 ⩽ 𝑧}
= ℙ{𝑋 ⩽ 𝑧}ℙ{𝑌 ⩽ 𝑧}
= 𝐹𝑋 (𝑧)𝐹𝑌 (𝑧). ■

38



Independence of many random variables

Definition 20
Discrete random variables 𝑋1, . . . , 𝑋𝑛 are said to be mutually independent (or simply, in-
dependent) if

ℙ{𝑋1 = 𝑥1, . . . , 𝑋𝑛 = 𝑥𝑛} = ℙ{𝑋1 = 𝑥1} · · ·ℙ{𝑋𝑛 = 𝑥𝑛}

for all 𝑥1, . . . , 𝑥𝑛 ∈ ℝ.
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Examples

Example 21

Suppose that the number of people who enter a post office on a given day is a
Poisson random variable with parameter 𝜆. If each person who enters the post
office is a male with probability 𝑝 and a female with probability 1 − 𝑝, then the
number of males and females entering the post office are independent Poisson
random variables with respective parameters 𝜆𝑝 and 𝜆 (1 − 𝑝).
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Solution.
Let 𝑋 and 𝑌 denote the number of males and females that enter the post office, respectively.
We shall show the independence of 𝑋 and 𝑌 by showing that

ℙ{𝑋 = 𝑖, 𝑌 = 𝑗} = ℙ{𝑋 = 𝑖}ℙ{𝑌 = 𝑗}.

Note that

ℙ{𝑋 = 𝑖, 𝑌 = 𝑗} = ℙ{𝑋 = 𝑖, 𝑌 = 𝑗 |𝑋 + 𝑌 = 𝑖 + 𝑗}ℙ{𝑋 + 𝑌 = 𝑖 + 𝑗}.

Because 𝑋 + 𝑌 is the total number of people who enter the post office, it follows that

ℙ{𝑋 + 𝑌 = 𝑖 + 𝑗} = 𝑒−𝜆 𝜆 𝑖+ 𝑗

(𝑖 + 𝑗)! .
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Given that 𝑖 + 𝑗 people enter the post office, it follows that 𝑋 ∼ Binomial(𝑖 + 𝑗, 𝑝), and
therefore,

ℙ{𝑋 = 𝑖, 𝑌 = 𝑗 |𝑋 + 𝑌 = 𝑖 + 𝑗}
(
𝑖 + 𝑗

𝑖

)
𝑝𝑖 (1 − 𝑝) 𝑗.

Hence,

ℙ{𝑋 = 𝑖, 𝑌 = 𝑗} = 𝑒−𝜆 (𝜆𝑝) 𝑖
𝑖! 𝑗!

[𝜆 (1 − 𝑝)] 𝑗 =
{
𝑒−𝜆𝑝(𝜆𝑝) 𝑖

𝑖!

}{
𝑒−𝜆 (1−𝑝) [𝜆 (1−𝑝) ] 𝑗

𝑗!

}
. ■
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Examples

Example 22 (Buffon’s needle problem)

A table is ruled with equidistant paral-
lel lines a distance 𝐷 apart. A needle
of length 𝐿, where 𝐿 ⩽ 𝐷, is randomly
thrown on the table. What is the proba-
bility that the needle will intersect one of
the lines (the other possibility being that
the needle will be completely contained
in the strip between two lines)?

Figure: Buffon (1707–1788)
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Solution.
Let us determine the position of the needle by specifying (1) the distance 𝑋 from the middle
point of the needle to the nearest parallel line and (2) the angle 𝜃 between the needle and
the projected line of length 𝑋 . Then, the needle will intersect a line if the hypotenuse of
the right triangle is less than 𝐿/2:

𝑋

cos 𝜃
<

𝐿

2
.

Now, notice that 𝑋 varies between 0 and 𝐷/2 and 𝜃 between 0 and 𝜋/2, and assume that
they are independent. Hence,

ℙ{𝑋 <
𝐿

2
cos 𝜃} =

∬
𝑥<𝐿 cos 𝑦/2

𝑓𝑋 (𝑥) 𝑓𝜃(𝑦)𝑑𝑥𝑑𝑦 =
2𝐿
𝜋𝐷

. ■

Line 1

Line 2
𝑋 𝜃
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An important proposition

Proposition 23

The continuous (discrete) random variables 𝑋 and 𝑌 are independent if and only if their
joint probability density (mass) function can be expressed as

𝑓 (𝑥, 𝑦) = ℎ(𝑥)𝑔(𝑦) − ∞ < 𝑥, 𝑦 < ∞.

45



Proof (Continuous case only).
(i) ⇐= . First, note that independence implies that the joint density is the product of the
marginal densities of 𝑋 and 𝑌 , so the preceding factorization will hold when the random
variables are independent.
(ii) =⇒ . Suppose that 𝑓 (𝑥, 𝑦) = ℎ(𝑥)𝑔(𝑦), then

1 =
∫ ∞

−∞

∫ ∞

−∞
𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦

=

(∫ ∞

−∞
ℎ(𝑥)𝑑𝑥

) (∫ ∞

−∞
𝑔(𝑦)𝑑𝑦

)
:= 𝐶1𝐶2.

Also,

𝑓𝑋 (𝑥) =
∫ ∞

−∞
𝑓 (𝑥, 𝑦)𝑑𝑦 = 𝐶2ℎ(𝑥), 𝑓𝑌 (𝑦) = 𝐶1𝑔(𝑦),

and it follows that 𝑓 (𝑥, 𝑦) = 𝑓𝑋 (𝑥) 𝑓𝑌 (𝑦), which proves the result. ■
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Examples

Example 24

If the joint density function of 𝑋 and 𝑌 is

𝑓 (𝑥, 𝑦) =
{

6𝑒−2𝑥−3𝑦 0 < 𝑥, 𝑦 < ∞
0 otherwise.

Are these random variables indepen-
dent?

0.51 0.5 1

2

4

6

𝑥 𝑦

𝑧
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Example 25

What if the joint density function is

𝑓 (𝑥, 𝑦) = 24𝑥𝑦
0 < 𝑥 < 1, 0 < 𝑦 < 1, 0 < 𝑥 + 𝑦 < 1

and is equal to 0 otherwise? 1 1

5

𝑥 𝑦

𝑧
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Examples

Example 26

Let 𝑋, 𝑌, 𝑍 be independent and uniformly distributed over (0, 1).
Compute ℙ{𝑋 ⩾ 𝑌𝑍}.

Solution.

ℙ{𝑋 ⩾ 𝑌𝑍} =
∭

𝑥⩾𝑦𝑧
𝑓𝑋 (𝑥) 𝑓𝑌 (𝑦) 𝑓𝑍 (𝑧)𝑑𝑥𝑑𝑦𝑑𝑧

=
∫ 1

0

(∫ 1

0
(1 − 𝑦𝑧)𝑑𝑦

)
𝑑𝑧

=
∫ 1

0
(1 − 1

2
𝑧)𝑑𝑧

= 1 − 1
4
=

3
4
. ■
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Question

Whether 𝑋 and 𝑌 are independent?

(i) 𝑓 (𝑥, 𝑦) =
{

6𝑥𝑦2 0 < 𝑥 < 1, 0 < 𝑦 < 1,
0 otherwise

(ii) 𝑓 (𝑥, 𝑦) =
{

12𝑦2 0 ⩽ 𝑦 ⩽ 𝑥 ⩽ 1,
12𝑦2 0 ⩽ 𝑦 ⩽ 𝑥 ⩽ 1,

(iii) 𝑓 (𝑥, 𝑦) =
{

6𝑒−2𝑥−3𝑦 𝑥 > 0, 𝑦 > 0,
0 otherwise

(iv) 𝑓 (𝑥, 𝑦) =
{
𝑥2 + 𝑥𝑦

3 0 < 𝑥 < 1, 0 < 𝑦 < 2,
0 otherwise
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Sums of independent random variables
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The distribution of 𝑋 + 𝑌

■ Suppose that 𝑋 and 𝑌 are independent,
continuous random variables having pdf
𝑓𝑋 and 𝑓𝑌 .

■ The cdf of 𝑋 + 𝑌 is

𝐹𝑋+𝑌 (𝑧) = ℙ{𝑋 + 𝑌 ⩽ 𝑧}

=
∬

𝑥+𝑦⩽𝑧

𝑓𝑋 (𝑥) 𝑓𝑌 (𝑦)𝑑𝑥𝑑𝑦

=
∫ ∞

−∞

(∫ 𝑧−𝑦

−∞
𝑓𝑋 (𝑥)𝑑𝑥

)
𝑓𝑌 (𝑦)𝑑𝑦

=
∫ ∞

−∞
𝐹𝑋 (𝑧 − 𝑦)𝑑𝐹𝑌 (𝑦)

= (𝐹𝑋 ★ 𝐹𝑌 )(𝑧).

𝑥

𝑦

𝑥 + 𝑦 ⩽ 𝑧
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cdf and pdf of 𝑋 + 𝑌

Definition 27 (Convolutions)
The convolution of two distribution functions 𝐹 and 𝐺 is defined to be

(𝐹 ★𝐺) (𝑧) =
∫ ∞

−∞
𝐹(𝑧 − 𝑦)𝑑𝐺(𝑦).

The convolution of two density functions 𝑓 and 𝑔 is defined as

( 𝑓 ∗ 𝑔) (𝑧) =
∫ ∞

−∞
𝑓 (𝑧 − 𝑦)𝑔(𝑦)𝑑𝑦.

Proposition 28

If 𝑋 and 𝑌 are independent, then the pdf of 𝑋 + 𝑌 is

𝑓𝑋+𝑌 (𝑧) = ( 𝑓𝑋 ∗ 𝑓𝑌 ) (𝑧).
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Identically distributed variables

Definition 29
Random variables 𝑋 and 𝑌 are said to be identically distributed if 𝐹𝑋 = 𝐹𝑌 .
If 𝑋 and 𝑌 are independent and identically distributed, then we write 𝑋 and 𝑌 are i.i.d. for
brevity.

Remark
■ 𝑋 and 𝑌 may not be defined on the same probability space. For example, let 𝛺1 =

{ 1 , ♠ }, and 𝛺2 = (0, 1], and define the classical probabilities on them. Let 𝑋 ( 1 ) =
1, 𝑋 ( ♠ ) = 0, and let 𝑌 (𝜔) = 1 if 𝜔 ∈ (0, 1/2] and 0 otherwise. Then, 𝑋 and 𝑌 are
identically distributed.

■ Identically random variables are not necessarily independent. To see this, let 𝑌 be
defined as above, and let 𝑍 = 1 − 𝑌 . Then, 𝑌 and 𝑍 are identically distributed but not
independent.
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Sum of two independent uniform random variables

Example 30

If 𝑋 and 𝑌 are i.i.d. Uniform random variables over (0, 1), calculate the probability
density of 𝑋 + 𝑌 .
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Sum of two independent uniform random variables

Proof.
Note that

𝑓𝑋 (𝑥) = 𝑓𝑌 (𝑥) =
{

1 0 < 𝑥 < 1
0 otherwise

we obtain

( 𝑓𝑋 ∗ 𝑓𝑌 )(𝑧) =
∫ 1

0
𝑓𝑋 (𝑧 − 𝑦) 𝑓𝑌 (𝑦)𝑑𝑦 =

∫ 1

0
I(0 < 𝑧 − 𝑦 < 1)𝑑𝑦

=
∫ 1∧𝑧

0∨(𝑧−1)
𝑑𝑦 =


𝑧 0 ⩽ 𝑧 ⩽ 1,
2 − 𝑧 1 < 𝑧 ⩽ 2,
0 otherwise.

■
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Sum of two independent uniform random variables

0 ⩽ 𝑧 ⩽ 1

1 < 𝑧 ⩽ 2
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Sum of 𝑛 independent uniform variables

Example 31

Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be independent 𝑈 (0, 1) random variables, and let 𝐹𝑛 be the distri-
bution function of 𝑋1 + . . . 𝑋𝑛.
(i) Prove by induction that

𝐹𝑛(𝑥) =
𝑥𝑛

𝑛!
0 ⩽ 𝑥 ⩽ 1.

(ii) Let

𝑁 = min{𝑛 : 𝑋1 + · · · + 𝑋𝑛 > 1}.

Prove that 𝔼[𝑁] = 𝑒.
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Sums of exponential random variables

■ Let 𝑋 and 𝑌 are i.i.d. Exp(𝜆) random variables. What is the density function of 𝑋 + 𝑌?

■ We have for 𝑧 > 0,

𝑓𝑋+𝑌 (𝑧) =
∫ ∞

0
𝜆2𝑒−𝜆 (𝑧−𝑦)𝑒−𝜆𝑦I(𝑧 − 𝑦 > 0)𝑑𝑦

= 𝜆2𝑒−𝜆𝑧

∫ 𝑧

0
1𝑑𝑦

= 𝜆2𝑧𝑒−𝜆𝑧 .

■ Continue this argument, we have for independent random variables
𝑋1, . . . , 𝑋𝑛 ∼ Exp(𝜆),

𝑓𝑋1+···+𝑋𝑛 (𝑧) =
𝜆𝑒−𝜆𝑧 (𝜆𝑧)𝑛−1

(𝑛 − 1)! , 0 < 𝑧 < ∞.
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Gamma distribution

Definition 32 (Gamma distribution)
A random variable is said to have a Gamma distribution with parameters 𝑘 (shape) and 𝜆
(scale), written as 𝑋 ∼ Gamma(𝑘, 𝜆), if the density function of 𝑋 is given by

𝑓 (𝑥) = 𝜆𝑘𝑥𝑘−1𝑒−𝜆𝑥

𝛤(𝑘) , 0 < 𝑥 < ∞.

Remark
Note that Exp(𝜆) = Gamma(1, 𝜆). Moreover, if 𝑋1, . . . , 𝑋𝑛 ∼ Exp(𝜆), then

𝑋1 + · · · + 𝑋𝑛 ∼ Gamma(𝑛, 𝜆).
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Gamma densities
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Sums of gamma random variables

Proposition 33

If 𝑋 and 𝑌 are independent gamma random variables with respective parameters (𝑘1, 𝜆)
and (𝑘2, 𝜆), then 𝑋 + 𝑌 is a gamma random variable with parameters (𝑘1 + 𝑘2, 𝜆).

Proof.
We obtain

𝑓𝑋+𝑌 (𝑧) =
1

𝛤(𝑘1)𝛤(𝑘2)

∫ 𝑧

0
{𝜆𝑒−𝜆 (𝑧−𝑦) [𝜆 (𝑧 − 𝑦)]𝑘1−1}{𝜆𝑒−𝜆𝑦 (𝜆𝑦)𝑘2−1}𝑑𝑦

=
𝜆𝑘1+𝑘2𝑒−𝜆𝑧

𝛤(𝑘1)𝛤(𝑘2)

∫ 𝑧

0
(𝑧 − 𝑦)𝑘1−1𝑦𝑘2−1𝑑𝑦

=
𝜆𝑘1+𝑘2𝑒−𝜆𝑧𝑧𝑘1+𝑘2−1

𝛤(𝑘1)𝛤(𝑘2)

∫ 1

0
(1 − 𝑥)𝑘1−1𝑥𝑘2−1𝑑𝑥 =

𝜆𝑘1+𝑘2𝑧𝑘1+𝑘2−1𝑒−𝜆𝑧

𝛤(𝑘1 + 𝑘2)
. ■
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𝜒2-distribution

Definition 34 (𝜒2-distribution)

If 𝑍1, . . . , 𝑍𝑛 are independent 𝑁 (0, 1) random variables, then 𝑌 =
∑𝑛

𝑖=1 𝑍
2
𝑖 is said to have

the 𝜒2 distribution (chi-squared distribution) with 𝑛 degrees of freedom.
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Normal random variables

Proposition 35

If 𝑋1, . . . , 𝑋𝑛 are independent random variables with respective parameters 𝜇𝑖, 𝜎2
𝑖 for

𝑖 = 1, . . . , 𝑛, then for any 𝛼𝑖 ∈ ℝ,

𝑛∑
𝑖=1

𝛼𝑖𝑋𝑖 ∼ 𝑁

( 𝑛∑
𝑖=1

𝛼𝑖𝜇𝑖,
𝑛∑
𝑖=1

𝛼2
𝑖 𝜎

2
𝑖

)
.
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Examples

Example 36

A basketball team will play a 44-game season. Twenty-six of these games are
against class A teams and 18 are against class B teams. Suppose that the team
will win each game against a class A team with probability 0.4 and will win each
game against a class B team with probability 0.7. Suppose also that the results of
the different games are independent. Approximate the probability that
(a) the team wins 25 games or more;

(b) the team wins more games against class A teams than it does against class B
teams.
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Poisson and Binomial random variables

Proposition 37

If 𝑋 ∼ Poisson(𝜆1) and 𝑌 ∼ Poisson(𝜆2) are independent random variables, then

𝑋 + 𝑌 ∼ Poisson(𝜆1 + 𝜆2).

Proof.

ℙ{𝑋 + 𝑌 = 𝑛} =
𝑛∑

𝑘=0
ℙ{𝑋 = 𝑘, 𝑌 = 𝑛 − 𝑘}

=
𝑛∑

𝑘=0
ℙ{𝑋 = 𝑘}ℙ{𝑌 = 𝑛 − 𝑘} by independence

=
𝑛∑

𝑘=0
𝑒−𝜆1

𝜆𝑘
1
𝑘!

𝑒−𝜆2
𝜆𝑛−𝑘2

(𝑛 − 𝑘)!

=
𝑒−(𝜆1+𝜆2 )

𝑛!
(𝜆1 + 𝜆2)𝑛. ■
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Some commonly used sums

𝑋1 Ber(𝑝) Binom(𝑛, 𝑝) Poisson(𝜆1) Exp(𝜆) 𝛤(𝑘1, 𝜆) 𝑁 (𝜇1, 𝜎2
1)

𝑋2 Ber(𝑝) Binom(𝑚, 𝑝) Poisson(𝜆2) Exp(𝜆) 𝛤(𝑘2, 𝜆) 𝑁 (𝜇2, 𝜎2
2)

𝑋1 + 𝑋2 Binom(2, 𝑝) Binom(𝑚 + 𝑛, 𝑝) Poisson(𝜆1 + 𝜆2) 𝛤(2, 𝜆) 𝛤(𝑘1 + 𝑘2, 𝜆) 𝑁 (𝜇1 + 𝜇2, 𝜎2
1 + 𝜎2

2)

Table: Sum of Two Independent Variables
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Conditional distributions
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Introduction

■ Conditional probability

■ Conditional distribution: given the information of 𝑋 , how does 𝑌 behave?
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Conditional distribution: Discrete case

Definition 38
If 𝑋 and 𝑌 are discrete random variables with joint pmf 𝑝(𝑥, 𝑦), the conditional probability
mass function of 𝑋 given 𝑌 = 𝑦 is defined as

𝑝𝑋 |𝑌 (𝑥 |𝑦) = ℙ{𝑋 = 𝑥 |𝑌 = 𝑦} = 𝑝(𝑥, 𝑦)
𝑝𝑌 (𝑦)

for all values of 𝑦 such that 𝑝𝑌 (𝑦) > 0.
The conditional distribution function of 𝑋 given that 𝑌 = 𝑦 is defined as

𝐹𝑋 |𝑌 (𝑥 |𝑦) = ℙ{𝑋 ⩽ 𝑥 |𝑌 = 𝑦} =
∑
𝑢⩽𝑥

𝑝𝑋 |𝑌 (𝑢 |𝑦).
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Example 39

Suppose that the joint probability mass function of 𝑋 and 𝑌 is given by

𝑝(0, 0) = 0.4, 𝑝(0, 1) = 0.2, 𝑝(1, 0) = 0.1, 𝑝(1, 1) = 0.3.

Calculate the conditional pmf of 𝑋 given 𝑌 = 1.

Solution.
Note that

𝑝𝑌 (1) =
∑
𝑥

𝑝(𝑥, 1) = 𝑝(0, 1) + 𝑝(1, 1) = 0.5.

Hence,

𝑝𝑋 |𝑌 (0 |1) =
𝑝(0, 1)
𝑝𝑌 (1)

=
2
5
, 𝑝𝑋 |𝑌 (1 |1) =

𝑝(1, 1)
𝑝𝑌 (1)

=
3
5
. ■
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Poisson distribution

If 𝑋1 ∼ Poisson(𝜆1) and 𝑋2 ∼ Poisson(𝜆2) are independent random variables, then

𝑝𝑋 |𝑋+𝑌 (𝑘 |𝑛) =?
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Conditional distribution: continuous case

Definition 40
If 𝑋 and 𝑌 have a joint pdf 𝑓 (𝑥, 𝑦), then the conditional pdf of 𝑋 given 𝑌 = 𝑦 is defined as

𝑓𝑋 |𝑌 (𝑥 |𝑦) =
𝑓 (𝑥, 𝑦)
𝑓𝑌 (𝑦)

for all 𝑦 such that 𝑓𝑌 (𝑦) > 0.
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Examples

Example 41

The joint density of 𝑋 and 𝑌 is given by

𝑓 (𝑥, 𝑦) =
{

12
5 𝑥 (2 − 𝑥 − 𝑦) 0 < 𝑥, 𝑦 < 1

0 otherwise

Compute the conditional pdf of 𝑋 given that 𝑌 = 𝑦, where 0 < 𝑦 < 1.

Solution.

𝑓𝑋 |𝑌 (𝑥 |𝑦) =
𝑓 (𝑥, 𝑦)
𝑓𝑌 (𝑦)

=
𝑥 (2 − 𝑥 − 𝑦)∫ 1

0 𝑥 (2 − 𝑥 − 𝑦)𝑑𝑥

=
6𝑥 (2 − 𝑥 − 𝑦)

4 − 3𝑦
, 0 < 𝑥, 𝑦 < 1. ■
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Figure

𝑥 𝑦

𝑧

0.5 1

0.5

1

1.5

𝑥

𝑧
𝑓 (𝑥, 0.5) ∝

𝑥 (1.5 − 𝑥 )
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Joint probability distribution of 𝑔(𝑋, 𝑌 )

■ Let 𝑋 and 𝑌 be jointly continuous random variables with joint pdf 𝑓𝑋,𝑌 .

■ In may questions, we want to obtain the joint distribution 𝑓𝑈,𝑉 of 𝑋 and 𝑌 , where

𝑈 = 𝑔(𝑋, 𝑌 ), 𝑉 = ℎ(𝑋, 𝑌 ).

■ Assume that 𝑔 and ℎ both have continuous partial derivatives at all points (𝑥, 𝑦) and

𝐽 (𝑥, 𝑦) :=

��������
𝜕𝑔

𝜕𝑥

𝜕𝑔

𝜕𝑦

𝜕ℎ

𝜕𝑥

𝜕ℎ

𝜕𝑦

�������� ≠ 0 at all points (𝑥, 𝑦).
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Theorem 42
Under these two conditions, it can be shown that the random variables 𝑈 and 𝑉 are
jointly continuous with joint pdf

𝑓𝑈,𝑉 (𝑢, 𝑣) = 𝑓𝑋,𝑌 (𝑥, 𝑦) |𝐽 (𝑥, 𝑦) |−1,

where 𝑥 = �̃�(𝑢, 𝑣) and 𝑦 = ℎ̃(𝑢, 𝑣) is the inverse of 𝑔 and ℎ.
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Examples

Example 43

If 𝑋 and 𝑌 be jointly continuous random variables with probability density function
𝑓𝑋,𝑌 . Let 𝑈 = 𝑋 + 𝑌 and 𝑉 = 𝑋 − 𝑌 . Find the joint pdf of 𝑈 and 𝑉.
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Solution.
Let 𝑔(𝑥, 𝑦) = 𝑥 + 𝑦 and ℎ(𝑥, 𝑦) = 𝑥 − 𝑦. Then,

𝐽 (𝑥, 𝑦) =
����1 1
1 −1

���� = −2.

Also, solve equation system {
𝑢 = 𝑥 + 𝑦

𝑣 = 𝑥 − 𝑦
=⇒


𝑥 =

𝑢 + 𝑣

2
𝑦 =

𝑢 − 𝑣

2

Therefore,

𝑓𝑈,𝑉 (𝑢, 𝑣) =
1
2
𝑓𝑋,𝑌

(
𝑢 + 𝑣

2
,
𝑢 − 𝑣

2

)
. ■
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Examples

Example 44

Let (𝑋, 𝑌 ) denote a random point in the plane, and assume that the rectangular
coordinates 𝑋 and 𝑌 are independent standard normal random variables. Let (𝑅, 𝛩)
be the polar coordinate representation of (𝑋, 𝑌 ). Find the joint pdf of (𝑅, 𝜃).
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Solution.
For any positive 𝑥 and 𝑦, let

𝑟 = 𝑔1(𝑥, 𝑦) =
√
𝑥2 + 𝑦2, 𝜃 = 𝑔2(𝑥, 𝑦) = tan−1 𝑦

𝑥
.

Then,
𝜕𝑔1
𝜕𝑥

=
𝑥√

𝑥2 + 𝑦2
,

𝜕𝑔1
𝜕𝑦

=
𝑦√

𝑥2 + 𝑦2
,

𝜕𝑔2
𝜕𝑥

= − 𝑦

𝑥2 + 𝑦2 ,
𝜕𝑔2
𝜕𝑦

=
𝑥√

𝑥2 + 𝑦2
,

and

𝐽 (𝑥, 𝑦) =

�������
𝑥√

𝑥2 + 𝑦2

𝑦√
𝑥2 + 𝑦2

− 𝑦

𝑥2 + 𝑦2
𝑥

𝑥2 + 𝑦2

������� = 1√
𝑥2 + 𝑦2

=
1
𝑟
.
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Note that

𝑓𝑋,𝑌 (𝑥, 𝑦 |𝑋 > 0, 𝑌 > 0) = 2
𝜋
𝑒−(𝑥2+𝑦2 )/2, 𝑥 > 0, 𝑦 > 0.

Then,

𝑓𝑅,𝛩 (𝑟, 𝜃 |𝑋 > 0, 𝑌 > 0) = 2
𝜋
𝑟𝑒−𝑟

2/2, 0 < 𝜃 < 𝜋/2, 0 < 𝑟 < ∞.

Similarly, we can show that

𝑓𝑅,𝛩 (𝑟, 𝜃 |𝑋 < 0, 𝑌 > 0) = 2
𝜋
𝑟𝑒−𝑟

2/2,
𝜋

2
< 𝜃 < 𝜋, 0 < 𝑟 < ∞,

𝑓𝑅,𝛩 (𝑟, 𝜃 |𝑋 < 0, 𝑌 < 0) = 2
𝜋
𝑟𝑒−𝑟

2/2, 𝜋 < 𝜃 < 3𝜋/2, 0 < 𝑟 < ∞,

𝑓𝑅,𝛩 (𝑟, 𝜃 |𝑋 > 0, 𝑌 < 0) = 2
𝜋
𝑟𝑒−𝑟

2/2, 3𝜋/2 < 𝜃 < 2𝜋, 0 < 𝑟 < ∞.

Combining, we obtain 𝑓𝑅,𝛩 (𝑟, 𝜃) = 1
2𝜋𝑟𝑒

𝑟2/2, 0 < 𝜃 < 2𝜋, 0 < 𝑟 < ∞. ■
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Examples

Example 45

If 𝑋 ∼ Gamma(𝛼, 𝜆) and 𝑌 ∼ Gamma(𝛽, 𝜆) are independent, compute the joint
density of 𝑈 = 𝑋 + 𝑌 and 𝑉 = 𝑋

𝑋+𝑌 .

Solution.
The joint pdf of 𝑋 and 𝑌 is given by

𝑓𝑋,𝑌 (𝑥, 𝑦) =
𝜆𝑒−𝜆𝑥 (𝜆𝑥)𝛼−1

𝛤(𝛼)
𝜆𝑒−𝜆𝑦 (𝜆𝑦)𝛽−1

𝛤(𝛽)

=
𝜆𝛼+𝛽

𝛤(𝛼)𝛤(𝛽) 𝑒
−𝜆 (𝑥+𝑦) 𝑥𝛼−1𝑦𝛽−1.
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Examples

Now, let 𝑔1(𝑥, 𝑦) = 𝑥 + 𝑦 and 𝑔2(𝑥, 𝑦) = 𝑥/(𝑥 + 𝑦), then

𝜕𝑔1
𝜕𝑥

=
𝜕𝑔1
𝜕𝑦

= 1, 𝜕𝑔2
𝜕𝑥

=
𝑦

(𝑥 + 𝑦)2 ,
𝜕𝑔2
𝜕𝑦

= − 𝑥

(𝑥 + 𝑦)2 ,

so

𝐽 (𝑥, 𝑦) =

�������
1 1

𝑦

(𝑥 + 𝑦)2
−𝑥

(𝑥 + 𝑦)2

������� = − 1
𝑥 + 𝑦

.
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Examples

Moreover, as the equations 𝑢 = 𝑥+𝑦 and 𝑣 = 𝑥/(𝑥+𝑦) have solutions 𝑥 = 𝑢𝑣 and 𝑦 = 𝑢(1−𝑣),
we see that

𝑓𝑈,𝑉 (𝑢, 𝑣) = 𝑓𝑋,𝑌 (𝑢𝑣, 𝑢(1 − 𝑣)) |𝑢|

=
𝜆𝑒−𝜆𝑢(𝜆𝑢)𝛼+𝛽−1

𝛤(𝛼 + 𝛽)︸               ︷︷               ︸
𝛤(𝛼+𝛽,𝜆 )

𝑣𝛼−1(1 − 𝑣)𝛽−1𝛤(𝛼 + 𝛽)
𝛤(𝛼)𝛤(𝛽)︸                          ︷︷                          ︸
Beta(𝛼,𝛽)

. ■
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Further reading

[1] Sheldon M. Ross (谢尔登・M.罗斯).

A first course in probability (概率论基础教程): Chapter 6.

10th edition (原书第十版),机械工业出版社
[2] Sheldon M. Ross (谢尔登・M.罗斯).

Introduction to Probability Models (概率模型导论): Chapter 3.

12th edition (原书第十二版),人民邮电出版社
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Random variables

■ We have introduced the concept of random variables.

■ We also defined cdf and pmf:

ℙ{𝑋 ⩽ 𝑥}, ℙ{𝑋 = 𝑥}, ℙ{𝑎 < 𝑋 ⩽ 𝑏}, . . .

■ Remember that 𝑋 : 𝛺 → ℝ, for any 𝑎 < 𝑏,

{𝑎 < 𝑋 ⩽ 𝑏} = {𝜔 : 𝑎 < 𝑋 (𝜔) ⩽ 𝑏} need to be measurable
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Borel sets and Borel field

Definition 46
The Borel field, denoted by ℬ(ℝ), or simply ℬ, is the smallest 𝜎-field containing all inter-
vals {(𝑎, 𝑏] : −∞ < 𝑎 < 𝑏 < ∞}.

Remark
Observe that

{𝑎} =
∞∏
𝑛=1

(𝑎 − 1
𝑛
, 𝑎],

(𝑎, 𝑏) = (𝑎, 𝑏] \ {𝑏},
[𝑎, 𝑏] = (𝑎, 𝑏] ∪ {𝑎},
[𝑎, 𝑏) = ((𝑎, 𝑏] \ {𝑏}) ∪ {𝑎}

all belongs to ℬ.
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A formal definition of Random variable

Definition 47 (Random variable)

Let (𝛺,ℱ,ℙ) be a probability space, and let
𝑋 : 𝛺 → ℝ be a function. If

{𝑋 ∈ 𝐵} = {𝜔 : 𝑋 (𝜔) ∈ 𝐵} = 𝑋−1(𝐵) ∈ ℱ

for any Borel set 𝐵 ∈ ℬ, then 𝑋 is called a
random variable.

ℝ
𝐵

𝑋−1(𝐵)

𝛺

𝑋
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Examples

Example 48

Flip two different coins 1 , 5 . Let 𝑋 be numbers of heads. Discuss that why 𝑋 is
a random variable.

Solution.
The sample space 𝛺 = {( 1 , 5 ), ( 1 , ♣ ), ( ♠ , 5 ), ( ♠ , ♣ )}. The simga-field ℱ is the
power set of 𝛺, which contains all subsets of 𝛺. ■

( 1 , 5 )( 1 , ♣ )

( ♠ , 5 ) ( ♠ , ♣ )

𝛺

ℝ0 1 2
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Random vectors

Definition 49 (Random vectors)
If random variables 𝑋1, . . . , 𝑋𝑝 are defined on the same probability space (𝛺,ℱ,ℙ), then
X = (𝑋1, . . . , 𝑋𝑝) is called a 𝑝-dimensional random vector.

Remark
Note that for any 𝑥1, . . . , 𝑥𝑝,

{𝜔 : 𝑋1(𝜔) ⩽ 𝑥1, . . . , 𝑋𝑝(𝜔) ⩽ 𝑥𝑝} =
𝑝⋂
𝑗=1

{𝜔 : 𝑋 𝑗 (𝜔) ⩽ 𝑥 𝑗} ⩽ ℱ.
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𝑛-dimensional random vecters

𝑦

𝑧

𝑥

𝐵 ⊂ ℝ𝑝

𝛺

X−1(𝐵)

X
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Joint (cumulative) distribution function

Definition 50
The joint 𝑝-dimensional cdf of X is defined as

𝐹(𝑥1, . . . , 𝑥𝑝) = ℙ{𝑋1 ⩽ 𝑥1, 𝑋2 ⩽ 𝑥2, . . . , 𝑋𝑝 ⩽ 𝑥𝑝}.

Proposition 51

The joint cdf 𝐹 satisfies the following properties:
(i) Monotonicity: For every 𝑥 𝑗 ⩽ 𝑦 𝑗,

𝐹(𝑥1, . . . , 𝑥 𝑗−1, 𝑥 𝑗, 𝑥 𝑗+1, . . . , 𝑥𝑝) ⩽ 𝐹(𝑥1, . . . , 𝑥 𝑗−1, 𝑦 𝑗, 𝑥 𝑗+1, . . . , 𝑥𝑝).

(ii) For any 𝑥1, . . . , 𝑥𝑝,

lim
𝑥 𝑗→−∞

𝐹(𝑥1, . . . , 𝑥 𝑗−1, 𝑥 𝑗, 𝑥 𝑗+1, . . . , 𝑥𝑝) = 0, 𝐹(∞,∞, . . . ,∞) = 1.
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Joint pmf

Definition 52
For jointly discrete random vector X, the joint pmf of X is defined as

𝑝(𝑥1, . . . , 𝑥𝑝) = ℙ{𝑋1 = 𝑥1, . . . , 𝑋𝑝 = 𝑥𝑝}.
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Multinomial distribution

Definition 53
Assume that there are 𝑟 possibilities in a trial: 𝐴1, . . . , 𝐴𝑟, and ℙ(𝐴 𝑗) = 𝑝 𝑗 for 𝑗 = 1, . . . , 𝑟,
𝑝1 + · · · + 𝑝𝑟 = 1. If we repeat this trial 𝑛 times independently, and let 𝑋 𝑗 denote the number
of occurrences of 𝐴 𝑗, then

ℙ{𝑋1 = 𝑘1, . . . , 𝑋𝑟 = 𝑘𝑟} =
𝑛!

𝑘1! · · · 𝑘𝑟!
𝑝𝑘1

1 . . . 𝑝𝑘𝑟 for 𝑘1, . . . , 𝑘𝑟 ⩾ 0 and 𝑘1 + · · · + 𝑘𝑟 = 𝑛.
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Joint pdf

Definition 54
If there exists a nonnegative function 𝑓 (𝑥1, . . . , 𝑥𝑝) such that

𝐹(𝑥1, . . . , 𝑥𝑝) =
∫ 𝑥1

−∞
· · ·

∫ 𝑥𝑝

−∞
𝑓 (𝑢1, . . . , 𝑢𝑝)𝑑𝑢1 . . . 𝑑𝑢𝑝,

then 𝑓 is called the joint probability density function (pdf) of X. Here, 𝑓 satisfies the fol-
lowing two conditions:
(i) 𝑓 (𝑥1, . . . , 𝑥𝑝) ⩾ 0,

(ii)
∫ ∞

−∞
· · ·

∫ ∞

−∞
𝑓 (𝑥1, . . . , 𝑥𝑝)𝑑𝑥1 . . . 𝑑𝑥𝑝 = 1.
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Uniform distribution

Definition 55
If 𝐴 ⊂ ℝ𝑝 such that 𝜆 (𝐴) < ∞, where 𝜆 (𝐴) is the Lebesgue measure (volume) of 𝐴. If X
has the joint pdf

𝑓 (𝑥1, . . . , 𝑥𝑝) =


1
𝜆 (𝐴) x ∈ 𝐴,

0 otherwise,

then X is said to have the uniform distribution on 𝐴.
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Independent random variables

Definition 56
Let 𝑋1, . . . , 𝑋𝑝 be 𝑝 random variables. If for any 𝐵1, . . . , 𝐵𝑝 ∈ ℬ(ℝ),

ℙ{𝑋1 ∈ 𝐵1, . . . , 𝑋𝑝 ∈ 𝐵𝑝} =
𝑝∏
𝑗=1

ℙ{𝑋 𝑗 ∈ 𝐵 𝑗}.

Remark
Specially, if 𝐵 𝑗 = (−∞, 𝑥 𝑗] for each 𝑗 = 1, . . . , 𝑝, then

𝐹(𝑥1, . . . , 𝑥𝑝) = 𝐹𝑋1 (𝑥1) . . . 𝐹𝑋𝑝 (𝑥𝑝).
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Properties

Proposition 57

If 𝑋1, . . . , 𝑋𝑝 are independent, then for any 1 ⩽ 𝑟 ⩽ 𝑝, any subset {𝑋𝑖1 , . . . , 𝑋𝑖𝑟 } of
{𝑋1, . . . , 𝑋𝑝} are also independent.

Proof.
We only prove 𝑋1, . . . , 𝑋𝑝−1 are independent: Note that

ℙ{𝑋1 ∈ 𝐵1, . . . , 𝑋𝑝−1 ∈ 𝐵𝑝−1} = ℙ{𝑋1 ∈ 𝐵1, . . . , 𝑋𝑝−1 ∈ 𝐵𝑝−1, 𝑋𝑝 ∈ ℝ}

=

(𝑝−1∏
𝑗=1

ℙ{𝑋 𝑗 ∈ 𝐵 𝑗}
)
ℙ{𝑋𝑝 ∈ ℝ}

=
𝑝−1∏
𝑗=1

ℙ{𝑋 𝑗 ∈ 𝐵 𝑗}. ■
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Functions of independent random variables

Proposition 58

If 𝑋1, . . . , 𝑋𝑝 are independent, then for any Borel functions 𝑔1, . . . , 𝑔𝑝 : ℝ → ℝ, random
variables 𝑔1(𝑋1), . . . , 𝑔𝑝(𝑋𝑝) are also independent.

Proof.
For any Borel sets 𝐵1, . . . , 𝐵𝑝,

ℙ{𝑔1(𝑋1) ∈ 𝐵1, . . . , 𝑔𝑝(𝑋𝑝) ∈ 𝐵𝑝} = ℙ{𝑋1 ∈ 𝑔−1
1 (𝐵1), . . . , 𝑋𝑝 ∈ 𝑔−1

𝑝 (𝐵𝑝)}

=
𝑝∏
𝑗=1

ℙ{𝑋 𝑗 ∈ 𝑔−1
𝑗 (𝐵 𝑗)}

=
𝑝∏
𝑗=1

ℙ{𝑔 𝑗 (𝑋 𝑗) ∈ 𝐵 𝑗}. ■
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Maximum of independent random variables

Example 59

Let 𝑋1, . . . , 𝑋𝑛 be independent continuous random variables, with the common dis-
tribution function 𝐹(𝑥) and probability density function 𝑓 (𝑥). Let 𝑌 = max1⩽𝑖⩽𝑛 𝑋𝑖.
Find the distribution function and probability density function of 𝑌 .
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Solution

Solution.
Note that

ℙ{𝑌 ⩽ 𝑥} = ℙ{max(𝑋1, . . . , 𝑋𝑛) ⩽ 𝑥}
= ℙ{𝑋1 ⩽ 𝑥, 𝑋2 ⩽ 𝑥, . . . , 𝑋𝑛 ⩽ 𝑥}

=
𝑛∏
𝑖=1

ℙ{𝑋𝑖 ⩽ 𝑥} =
𝑛∏
𝑖=1

𝐹(𝑥) = [𝐹(𝑥)]𝑛.

Then,

𝐹𝑌 (𝑥) = [𝐹(𝑥)]𝑛.

Moreover,

𝑓𝑌 (𝑥) =
𝑑

𝑑𝑥
𝐹𝑌 (𝑥) = 𝑛[𝐹(𝑥)]𝑛−1 𝑓 (𝑥). ■
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Minimum of independent random variables

Example 60

Let 𝑊 = min1⩽𝑖⩽𝑛 𝑋𝑖. Find the distribution function of 𝑊.
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Solution

Solution.
Note that

ℙ{𝑊 > 𝑥} = ℙ{min(𝑋1, . . . , 𝑋𝑛) > 𝑥}
= ℙ{𝑋1 > 𝑥, 𝑋2 > 𝑥, . . . , 𝑋𝑛 > 𝑥}

=
𝑛∏
𝑖=1

ℙ{𝑋𝑖 > 𝑥}

=
𝑛∏
𝑖=1

(1 − 𝐹(𝑥)),

then

𝐹𝑊 (𝑥) = 1 − ℙ{𝑊 > 𝑥} = 1 −
𝑛∏
𝑖=1

(1 − 𝐹(𝑥)). ■
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Distribution of (𝑊,𝑌 )

Example 61

Find the joint distribution of (𝑊,𝑌 ).
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Solution

Solution.
If 𝑤 ⩾ 𝑦, then {𝑌 ⩽ 𝑦} ⊂ {𝑊 ⩽ 𝑤}, and thus

𝐹𝑊,𝑌 (𝑤, 𝑦) = ℙ{𝑊 ⩽ 𝑤,𝑌 ⩽ 𝑦}
= ℙ{𝑌 ⩽ 𝑦} = [𝐹(𝑦)]𝑛.

If 𝑤 > 𝑦,

𝐹𝑊,𝑌 (𝑤, 𝑦) = ℙ{𝑊 ⩽ 𝑤,𝑌 ⩽ 𝑦}
= ℙ{𝑌 ⩽ 𝑦} − ℙ{𝑊 > 𝑤,𝑌 ⩽ 𝑦}.
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Solution
For the second term, the event means that all of the variables 𝑋1, . . . , 𝑋𝑛 are between 𝑤
and 𝑦, which means that

ℙ{𝑊 > 𝑤,𝑌 ⩽ 𝑦} = ℙ{𝑤 < 𝑋1 ⩽ 𝑦, . . . , 𝑤 < 𝑋𝑛 ⩽ 𝑦}

=
𝑛∏
𝑖=1

ℙ{𝑤 < 𝑋𝑖 ⩽ 𝑦} =
𝑛∏
𝑖=1

(𝐹(𝑦) − 𝐹(𝑤)) = [𝐹(𝑦) − 𝐹(𝑤)]𝑛.

Therefore, if 𝑤 > 𝑦, then

𝐹𝑊,𝑌 (𝑤, 𝑦) = [𝐹(𝑦)]𝑛 − [𝐹(𝑦) − 𝐹(𝑤)]𝑛.

The joint pdf of (𝑊,𝑌 ) is

𝑓𝑊,𝑌 (𝑤, 𝑦) = 𝑑2

𝑑𝑤𝑑𝑦
𝐹𝑊,𝑌 (𝑤, 𝑦)

=

{
0 𝑤 ⩾ 𝑦

𝑛(𝑛 − 1) [𝐹(𝑦) − 𝐹(𝑤)]𝑛−2 𝑓 (𝑤) 𝑓 (𝑦) 𝑤 < 𝑦.
■

107



Distribution of the range (极差)

Example 62

Let 𝑅 = max(𝑋1, . . . , 𝑋𝑛) − min(𝑋1, . . . , 𝑋𝑛). The variable 𝑅 is called the range of the
data.
In descriptive statistics, range is the size of the smallest interval which contains all
the data and provides an indication of statistical dispersion. Since it only depends
on two of the observations, it is most useful in representing the dispersion of small
data sets.
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Distribution of the range (极差)

Solution.
Note that for 𝑟 ⩾ 0,

𝐹𝑅 (𝑟) = ℙ{𝑅 ⩽ 𝑟}

=
∬

𝑦−𝑤⩽𝑟
𝑓𝑊,𝑌 (𝑤, 𝑦)𝑑𝑤𝑑𝑦

=
∫ ∞

−∞

(∫ 𝑤+𝑟

−∞
𝑓𝑊,𝑌 (𝑤, 𝑦)𝑑𝑦

)
𝑑𝑤

=
∫ ∞

−∞

(∫ 𝑟

−∞
𝑓𝑊,𝑌 (𝑤,𝑤 + 𝑢)𝑑𝑢

)
𝑑𝑤

=
∫ 𝑟

−∞

(∫ ∞

−∞
𝑓𝑊,𝑌 (𝑤,𝑤 + 𝑢)𝑑𝑤

)
𝑑𝑢.
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Distribution of the range (极差)

Solution (Cont’d).
Therefore,

𝑓𝑅 (𝑟) =
𝑑

𝑑𝑟
𝐹𝑅 (𝑟) =

∫ ∞

−∞
𝑓𝑊,𝑌 (𝑤,𝑤 + 𝑟)𝑑𝑤

= 𝑛(𝑛 − 1)
∫ ∞

−∞
[𝐹(𝑥 + 𝑟) − 𝐹(𝑥)]𝑛−2 𝑓 (𝑥) 𝑓 (𝑥 + 𝑟)𝑑𝑥. ■
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