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Continuous random variables
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There are random variables other than discrete random variables, that is, it take continuous
values:

m the waiting time for the next bus;
m the height of a randomly selected SUSTech student;
m the delay time of a flight;

m and so on...



Definition

Definition 1

We say that X is a continuous random vari-
able if there exists a nonnegative function f,
defined for all real x € R, having the prop-
erty

P{X € B} = /f(x)dx
B
for any B € #(R).

Remark
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f(x)

fo(x)dx

m This definition is also known as “absolutely continuous random variables”.

B The support of X is defined as S : {x : f(x) > 0}.



Probability density function KR EE 2T

Definition 2 (pdf)
The function f defined as in the last page is called the probability density function (pdf) of
the random variable X.
Proposition 3
Any pdf f satisfies the following properties:
(i) f(x) >0 for all x € R.

(i) [ foydx = [ fx)dx = 1.
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Examples ? A M LY

Example 4

Suppose that X is a continuous random variable whose probability density function
is given by

f(x) = c(4x — 2x?)
B c(4x-2x%) 0<x<?2
oo = {0 otherwise.

(a) What is the value of ¢?

(b) Find P{X > 1}.

(c) Find the distribution function of X.



Solution.

(a) Since f is a pdf, we have ff(x)dx =1, implying that

2
c/ (4x — 2x?)dx = 1,
0

(Y]

which further gives ¢ = 3.

(b) We have
00 3 2 ) 1
P{X > 1} :/ f(x)dx = —/ (4x — 2x7)dx = =.
1 8 J1 2
(c) For x <0, F(x) =P(X <x) =0. For x € (0,2),
F(x) =P(X <x) = /Oxf(x) = /Ox §(4t— 2t%)dt = EXQ - ;lx:)’.

Forx > 2, F(x) =P(X <x)=1.
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Examples

Example 5

The amount of time in hours that a com-
puter functions before breaking down is
a continuous random variable with prob-
ability density function given by

—x/100 >0
f(x) _ ce X
0 x < 0.

What is the probability that

(a) a computer will function between
50 and 150 hours before breaking
down?

(b) it will function for fewer than 100
hours?

SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

f(x) — Ce—x/lOO




Solution.

(a) Since

1 :/ f(x)dx = c/ e~¥/100gy,

we obtain

1
1=100c = c= 100°
Let X be the random variable represent-
ing the function time (in hours) of a
computer. Hence, the probability that a
computer will function between 50 and
150 hours before breaking down is given

by

P{50 < X < 150}

150
= f(x)dx
50
_ 1 0 /100 4,
100 Jso

=e 12 _¢73/2 5 0.384.

(b) Similarly,

100
P{X < 100} = f(x)dx
0

100 1
— / _e—x/IOde
, 100

=1-¢'~0.633.
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Distribution function of X ? A3 ML,

Proposition 6

Let F(x) = P(X < x) be the distribution function of X with support (a,b). Here, a may
be —co and b may be .

(i) For any x <y,

y
P{x <X <y} =F(y) —F(x) = / f(u)du.
(ii) F is continuous on (a,b).

(iii) For any x € (a,b), P{X =x} =0.



Proof.

(i) The first equality follows directly from the definition of cdf. For the second one,

y X Yy
F(y) - F(x) = / e = / e = / s

(ii) For any x € (a,b) and 6 > 0,

x+6
F(x+5)—F(x—5)=/ f(u)du.
x=68
Because f is integrable, then it is bounded®, and thus, F is continuous.
(iii) For any x € (a, b),

P(X =x) =F(x) — F(x—) = 0.

9We have assumed f is Riemann integrable.
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Distribution function ? A3 Wi %Y

The relationship between the cumulative distribution function F and the probability density
function f is expressed by

F(x)=P{X <x}= /x f(t)de.
Therefore, if f is continuous,
LF() = f(x).

Moreover,

Px<X<y =P(x<X<y)=..=F(y) —F(x).



A more intuitive interpretation

f(xo0)
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£
2

<X <

xo + §} ~ ef(xo)

f(x)

14



A pdf can take arbitrarily large value

Example 7

Consider a random variable X with pdf

0 otherwise.

L ifo<x<l,
f(x)={M

15

0.5

f(x)

0.5
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Functions of a random variable

16

m Let X be a continuous random variable
with support S.

m Letg: S — R be a function.

m Suppose that we want to know the
distribution of g(X).

m The distribution function of Y = g(X) is
given by
Fy(y) = P{Y <y}
=P{g(X) <y}
=P{X € g (-o0,y]}.

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

m If g is increasing, then

{Xeg (oo, yl} ={X <g ()}

g(x)
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Examples gv A3 M ALY

Example 8

If X is continuous with distribution function Fx and density function fx, find the
density function of Y = 2X.

Solution.

We first calculate the distribution function | Therefore,

FY of Y: d 1 .
Fy(y) = P{Y <y} fr(y) = d_yFY(y) =5F(3)
=P{2X < y} 1.y
y = §fx(§)~ u
=P{X < 5}

= FX(%)-



Examples ? A M LY
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Example 9

If X is a continuous random variable with probability density fx, then the distribution
of Y = X? is obtained as follows:

Fy(y) =P{Y <y}
=P{X* <y}
=P{—Vy <X <+y}
= Fx(\y) = Fx(=v),

and thus

fr(y) =Fp(y) = \/—{fY(‘/_) fr(=vy)}.
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Expectation of continuous random variables ? ASMBALY

Definition 10

Let X be a continuous random variable with probability density f. Then, the expectation
of X is defined as

E[X] :/wxf(x)dx

o0

provided that [ |x|f(x)dx < co.

Remark
If X is supported on S, that is, f(x) = 0 when x ¢ S, then

E[X] :‘/Sxf(x)dx.
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Examples gv A3 ML

Example 11
Find E[X] when the density function of X is

F() 2x 0<x<1
xX) =
0 otherwise.

Solution.

Note that the support of X is S = [0, 1]. f x-f
f(x) =2x xf(x) = 2x2
Therefore,

1 1 3 i
]E[X]z‘/0 xf(x)dx:‘/0 2x%dx 3 i

[
Wl b
]
|
><
\

S

20
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Expectation of g(X) ? A3 NS

21

Proposition 12

If X is a continuous random variable with probability density function f(x) on a support
S, then, for any function g:S —» R,

Elg(X)] = /S G ()



Proof of the preceding Proposition

We need to prove the following lemma:

Lemma 13

For a nonnegative continuous random variable Y,

E[Y] =‘/0 P{Y > y}dy.

22
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Proof of the preceding Proposition ? A3 Wi %Y

23

Proof.

Note that Y = fOY dy = [7 1(y < Y)dy, and taking expectations on both sides yields

E[Y] = ]E[/ T(y < Y)dy}
0
= / ]E[ﬂ (Y > y)]dy exchange the order of E and /
0

_ /oo]p{y > y}dy. (because P(A) = E[1(A)]) u
0



24

f()

P{Y > 0}

f(w)

P{Y > y}
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Proof of Proposition 12.

We only prove for the case where g > 0. By the above lemma with Y = g(X),

E[g(X)] = /0 " Ple(x) > y)dy

) /ow(_/xegzg(xw f(x)dx)dy
) ‘/S(/y:0<y<g(x) 1dy)f(x)dx

:‘/g(X)f(x)dx,
s



Examples
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Example 14
The density function of X is given by

1 ifO<x<1,
xX) =
fx) {0 otherwise.

Find E[eX].

Solution.

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
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Properties of expectation ? A3 Wi %Y

27

Proposition 15

Let X be a continuous random variable supported on S. For any a,b € R and g,h: S —
R,

Elag(X) +bh(X)] =aE[g(X)] + bE[h(X)].



rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Linearity property of expectation ? A3 NS

28

Proposition 16

More generally, let (2, %,P) be a probability space, and let X and Y be two random
variables. Then, for any a,b,

E[aX +bY] = a E[X] + bE[Y].
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Variance ? A3 ML,

29

Definition 17

The variance of a continuous random variable is defined exactly as it is for a discrete
random variable. If X is a random variable with expected value p, then the variance of X
is defined as

Var(X) = E[(X - 1)°] = E[x?] - (E[X])*.

Proposition 18
For any a,b € R,

Var(aX + b) = a® Var(X).



Examples

Example 19

Suppose that the density function of X is

f(x) ={

Find Var(X).

Solution.

We first compute E[X?]:

E[x?] = /mx2f(x)dx

o0

1
1
:/ 2x3dx = =.
0 2

30

2x 0<x<1

otherwise.

Hence,

/4/ " SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY



Commonly used continuous random
variables



Uniform random variables

Definition 20 (Uniform distribution)

A random variable X is said to be uniformly
distributed over the interval (0, 1) if its probability
density function is given by

f(x):{l 0<x<l1,

0 otherwise.

Note that forany 0 <a < b < 1,

G AIMBAY
f(x)
1 o—0
0 1 x

b
]P{a<X<b}:/ f(x)dx =b—a,

which is the length of the interval [a, b].
32
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Uniform distribution ‘{' A MHAY

Definition 21 (General uniform distribution)

We say X is a uniform random variable on the interval (a,p), denoted by X ~
Uniform(a, B), if the pdf of X is given by

f(x):{ﬂ%“ a<x<p

0 otherwise

f(x) F(x)
o 1

=
| [—
5]

33



Properties of Uniform distribution ? A MHAY
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Proposition 22
Let X ~ Uniform(a, ). Then

E[X] = “’;ﬂ, Var(x) = £ I;)Q.
Proof.
Note that and it follows that
E[x]zfaﬂﬂ’jadx:“;ﬂ, oo
and Var(X) = E[X*] - (E[X])* = ———,
E[XQ]:/ﬁ x2 dx:a2+aﬁ+ﬁ2,
« B—a 3 as desired. [ |
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Examples

Example 23

If X ~ Uniform(0, 10), find the probability that
(@) X <3,

(b) X > 6,

(c) 3<X <8.
Solution.

(@ P{X <3} = [ f(x)dx = & [’ 1dx = 0.3.
(b) P{X > 6} = [~ f(x)dx = 55 [ 1dx = 0.4.

(© P(3<X <8 = [, fx)dx = & [ 1dx = 0.5.
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Examples

36

Example 24

Buses arrive at a specified stop at 15-
minute intervals starting at 8 A.M. That
is, they arrive at 8, 8:15, 8:30, 8:45,
and so on. If a passenger arrives at
the stop at a time that is uniformly dis-
tributed between 8 and 8:30, find the
probability that he waits

(@) less than 5 minutes for a bus;

(b) more than 10 minutes for a bus.
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Solution.

Let X denote the number of minutes past 8
that the passenger arrives at the stop. Then,
X ~ Uniform(0, 30).

The passenger will have to wait less than
5 minutes if he arrives between 8 : 10 and
8 : 15 or between 8 : 25 and 8 : 30. Hence,
the desired probability for part (a) is

1
P{10 < X < 15} +P{25 < X < 30} = 3
Similarly, the probability for part (b) is

1
]P{O<X<5}+IP{15<X<20}=§. |




38



Normal distribution

39

Definition 25 (Normal distribution)

A random variable X is said to have a nor-
mal distribution, or a Gaussian distribution,
with parameters p and o2, denoted by

X ~ N(u,0%),

if the pdf of X is given by

F) = e T
X) = e 20 — <X <00,
V2mo

Specially, if X ~ N(0, 1), then X is said to be
a standard normal random variable.

Figure: Gauss (& 4#f, 1777—1855)



The normal curve EAEEEZTL:
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u—-30 p-—20 H-oO H p+o u+20 p+30

Figure: The normal curve

40
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History and examples
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History and examples ? ALY
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Examples include:

m the height of a man: In the UK, the mean male height is 1.778 m, and the standard
deviation 0.076 m;

m the error made in measuring a physical quantity: length of a piece of string using a ruler;

m exam scores: the SAT Reasoning Test has a distribution that is roughly unimodal and
symmetric and is designed to have an overall mean of about 500 and a standard
deviation of 100 for all test takers;

42



History and examples G A3 MY
de Moivre Laplace Gauss
R E A5 35 A5 & A7 )
Time
1733 1782 1809

m Abraham de Moivre (1733) used it to approximate probabilities associated with binomial
random variables when the binomial parameter n is large.

m Laplace calculated the normalizing constant V2o in 1782, and proved the CLT in 1810.

m Gauss discovered the normal distribution in 1809 as a way to rationalize the method of

least squares.

43



The proof of the normalizing constant
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Proposition 26
We have

I

Remark

More generally, for N(u, 0°), we have

if we take y = £,

o

1 /OO _ (x—p2)2 d 1 oo
e 20 X = ——
270 J -0 V21 J -0

" e 2dx = 1.

(o8]

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
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Proof.

Let [ = /_0:0 e~ /2dx. Then,

= (/me‘XE/de) (/Ooe_y2/2dy)
=/m/me_(x2+y2)dydx.

Now, let x = rcos6,y = rsin6, and it fol-
lows that dydx = rdOdr. Therefore,

0 21 .
e :/ / e " 2rd0dr
0 0
= 271/ re "2 dr
0

0o

= —2me ™12

= 211. [ ]

rsin @

rcos6

Figure: Change to Polar Coodinates in a Double
Integral



Linear transformation of X ? A3 ML,
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Proposition 27

If X ~ N(p1,0?), then for any a,b € R,
aX +b ~ N(ap + b, a%0?).

Remark
In particular,

X-n

~ N (0, 1).

If a = 0, then aX + b = b is a constant. We can consider a constant as a normal random
variable with mean b and variance 0.

46



Linear transformation of X

47

Proof.

Without loss of generality, we assume that
a > 0. For a < 0, the proof is similar. Let
Y = aX +b. Note that
Fy(x) =P{Y < x}
=P{aX +Db < x}
x-b
}

= P{X <

x—-b

)

where Fy is the cumulative distribution func-

= Fx(

/4/ " SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

tion of X. By differentiation, the pdf of Y is
given by

1 x—b
fr(x) = = fx( )
a a
1 { —(x—b—ap)Q}

= eXp{————>— >

V2mwao 2(ao)?
which shows that
Y ~ N(ap +b, a®0?). [



Expectation and variance of N(u, o

Proposition 28

If X ~ N(u,0?), then

E[X] = u,

48

)

Var(X) = 0°.




Expectation and variance of N (i, 0?)

Proof of the expectation.

X—p

Let Z = =—=. It suffices fo prove E[Z] = 0 and Var(Z) = 1.

Z ~N(0,1), we have

49
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To this end, note that



Expectation and variance of N (i, 0?)

Proof of the variance.

For the variance,

50

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

(integration by parts)
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The function @(x) " AWk AY

m It is customary to denote the cumulative distribution function of N(0, 1) by @(x):

D (x) = \/L_ /_x e 124t

27 [

BLE)
01
z .00 02 03 04 05
0.8

0 | 5000 | 5040 | 5080 | .5120 | 5160 | .5199
1 | 5398 | 5438 | 5478 | 5517 | 5557 | .5596 2(0.81) ~ 0.7910
2 | 5793 | 5832 | 5874 | 5910 | .5948 | .5987 0.6
3 | 6179 | 6217 | 6255 | 6293 | 6331 | .6368
4 | 6554 | 6591 | 6628 | .6664 | 6700 | .6736 0

5 6915 .6950 .6985 7019 .7054 .7088
.6 7257 7291 7324 7357 .7389 7422 0.2
7 .7580 7611 7642 7673 7704 7734

8 7910
.9 .8159 .8186 .8212 .8238 .8264 .8289

51
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CDF of N(0, 1) & A3y

m For negative x, @(x) can be obtained from the following relationship:
O(—x)=1-P(x), —o0<x< 00,

m For example,

@(0.21) =0.5832, @(-0.21) =1-@(0.21) = 0.4168.

m If X ~ N(p1,0%), then

JP{X<a}:]P{X;” <a_”}=cb(a_’1).

52



R codes
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m We can use R codes to calculate the probabilities: for example, if Z ~ N(0, 1),

P{Z < 0.81} equals

pnorm (0.81)
[1] 0.7910299

m P{Z > 0.81} equals

pnorm(0.81, lower=FALSE)
[1] 0.2089701

m If X ~ N(3,2%), then P{X < 5} equals

pnorm (5, mean=3, sd=2)
[1] 0.8413447
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Examples

Example 29

If X ~N(u=3,0°=9), find
(@) P{2 <X < 5};

(b) P{X >0};

(c) P{|x - 3| > 6}.
Solution.

(a) Note that with Z = (X - 3)/3 ~ N(0, 1),

2-3 X-3

5-3

P{2 <X =P
{<<5}{3<3

3

|

2 1
=@P|-|-d|-=] = 0.3779.
[5)-(3)

_P{

1 2
S LA L =

3 3

|

/4/ " SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY



Examples
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Example 30

An expert witness in a paternity suit testifies that the length (in days) of human
gestation is approximately normally distributed with parameters p = 270 and o2 =
100. The defendant in the suit is able to prove that he was out of the country
during a period that began 290 days before the birth of the child and ended 240
days before the birth. If the defendant was, in fact, the father of the child, what is
the probability that the mother could have had the very long or very short gestation
indicated by the testimony?

BE—ANFFFREST, —LEFFIEAFIER, AEIROGKE (UAXA$45) BT IE
Ao, BAA p =270, 0% =100, #HEABIEAILALTL T £7T49 290 X 3] 240 %
A —AAEES. W RRELRERETORE, RLFETREAAIES PHAGIET
KRIEFAGEIRPGMERL S )2

SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY



Exponential distribution

56

Definition 31 (Exponential distribution)

A continuous random variable X is said to
follow an exponential distribution with pa-
rameter A > 0, denoted by X ~ Exp(Q), if
its pdf is

le™™ x>0,
flx) = {O x < 0.

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

f(x)

?

Figure: Exponential density



Distribution function

57

Proposition 32
The CDF of X ~ Exp(4) is

l—e™ x>0,
F(x) =
0 x < 0.

Proof.

For any x > 0,

F(x) =P{X < x}

= / e Mdt
0

=1—e ™.

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Figure: CDF of Exp(4)



How to use Exp(1)? ? A3 MB ALY
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In practice, the exponential distribution often arises as the distribution of the amount of
time until some specific event occurs.

The amount of time (starting from now) until an earth quake occurs.
The waiting time until you receive a phone call.
The time length between mutations on a DNA strand (EF $3RZ).

How long it takes for a bank teller etc. to serve a customer.



Examples
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Example 33

Suppose that the length of a phone call
in minutes is an exponential random
variable with parameter A = 0.1. If
someone arrives immediately ahead of
you at a public telephone booth, find the
probability that you will have to wait

(a) more than 10 minutes;

(b) between 10 and 20 minutes.

SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY
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Solution.

Let X denote the length of the call made by the person in the booth. Then, X ~ Exp(0.1).
(a) The probability that you have to wait more than 10 minutes is

P{X > 10} = 1 — F(10) = ¢~ D10 = o=1 1 .368.
(b) The probability that you will wait between 10 and 20 minutes is

P{10 < X < 20} = F(20) — F(10)
— e—(O.l)(lO) _ e—(O.l)(?O)

el —¢72

~ 0.233. |
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Expectation and variance ? A>3 MLY%

61

Proposition 34
Let X ~ Exp(A). Then

1 1
]E[X] = 1, Var(X) = ﬁ

Remark

For example, in the bank customer example, the parameter A can be understood as the
average number of customers that a banker serves in a unit time interval, and thus the
average waiting time is 1/A.
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Memoryless property ? ALY

Proposition 35
If X ~ Exp(A), then it is memoryless, that is,

P{X >s+t|X >t} =P{X >s} foranys,t>0.

Proof.
For any s,t > 0, since {X > s +t} C {X > t}, it follows that

PU{X >s+t}N{X>t}) =P{X >s+t} =e ") = P{X > s} P{X > t}.

Then, it follows from the definition of conditional probability that

e—/1 (s+t)

P{X>s+t]X >t} = ——— =" =P{X >s}. m
o=

62
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Examples ? ALY
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Example 36

Suppose that the number of miles that a car can run before its battery wears out
is exponentially distributed with an average value of 10,000 miles. If a person
desires to take a 5000-mile trip, what is the probability that he or she will be able
to complete the trip without having to replace the car battery?
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Solution.

Let X be the lifetime (in 1000 miles) of the car, and it follows that [E[X] = 10 which further
implies that A = 0.1. Let x be the number of miles (in 1000 miles) that the battery had
been in use prior to the start of the trip. The desired probability is

P{X>x+5X>x}=1-F(5) = e~ (0D = 05 4 0.604. [

fx)

f(x)

t+5



Further reading

[1] Sheldon M. Ross (i§{/RE - M. ZHf).
A first course in probability (# % & sk #42): Chapter 5.
10th edition (R 1hR), AT\l hRtE
[2] FREF.
At %4 # ah: Chapters 3 and 4.
E=h, SFHE LR
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