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Continuous random variables
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Introduction

There are random variables other than discrete random variables, that is, it take continuous
values:
■ the waiting time for the next bus;

■ the height of a randomly selected SUSTech student;

■ the delay time of a flight;

■ and so on...
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Definition

Definition 1
We say that 𝑋 is a continuous random vari-
able if there exists a nonnegative function 𝑓 ,
defined for all real 𝑥 ∈ ℝ, having the prop-
erty

ℙ{𝑋 ∈ 𝐵} =
∫
𝐵
𝑓 (𝑥)𝑑𝑥

for any 𝐵 ∈ ℬ(ℝ).

ℝ

𝑓 (𝑥)

∫
𝐵 𝑓 (𝑥 )𝑑𝑥

𝐵

Remark
■ This definition is also known as “absolutely continuous random variables”.

■ The support of 𝑋 is defined as 𝕊 : {𝑥 : 𝑓 (𝑥) > 0}.
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Probability density function

Definition 2 (pdf)
The function 𝑓 defined as in the last page is called the probability density function (pdf) of
the random variable 𝑋 .

Proposition 3

Any pdf 𝑓 satisfies the following properties:

(i) 𝑓 (𝑥) ⩾ 0 for all 𝑥 ∈ ℝ.

(ii)
∫ ∞
−∞ 𝑓 (𝑥)𝑑𝑥 =

∫
𝕊
𝑓 (𝑥)𝑑𝑥 = 1.
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Examples

Example 4

Suppose that 𝑋 is a continuous random variable whose probability density function
is given by

𝑓 (𝑥) =
{
𝑐(4𝑥 − 2𝑥2) 0 < 𝑥 < 2
0 otherwise.

(a) What is the value of 𝑐?

(b) Find ℙ{𝑋 > 1}.

(c) Find the distribution function of 𝑋.

𝑓 (𝑥) = 𝑐(4𝑥 − 2𝑥2)

ℝ
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Solution.
(a) Since 𝑓 is a pdf, we have

∫
𝑓 (𝑥)𝑑𝑥 = 1, implying that

𝑐

∫ 2

0
(4𝑥 − 2𝑥2)𝑑𝑥 = 1,

which further gives 𝑐 = 3
8 .

(b) We have

ℙ{𝑋 > 1} =
∫ ∞

1
𝑓 (𝑥)𝑑𝑥 =

3
8

∫ 2

1
(4𝑥 − 2𝑥2)𝑑𝑥 =

1
2
.

(c) For 𝑥 ⩽ 0, 𝐹(𝑥) = ℙ(𝑋 ⩽ 𝑥) = 0. For 𝑥 ∈ (0, 2),

𝐹(𝑥) = ℙ(𝑋 ⩽ 𝑥) =
∫ 𝑥

0
𝑓 (𝑥) =

∫ 𝑥

0

3
8
(4𝑡 − 2𝑡2)𝑑𝑡 = 3

4
𝑥2 − 1

4
𝑥3.

For 𝑥 ⩾ 2, 𝐹(𝑥) = ℙ(𝑋 ⩽ 𝑥) = 1. ■
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Examples

Example 5

The amount of time in hours that a com-
puter functions before breaking down is
a continuous random variable with prob-
ability density function given by

𝑓 (𝑥) =
{
𝑐𝑒−𝑥/100 𝑥 ⩾ 0
0 𝑥 < 0.

What is the probability that
(a) a computer will function between

50 and 150 hours before breaking
down?

(b) it will function for fewer than 100
hours?

𝑓 (𝑥) = 𝑐𝑒−𝑥/100

ℝ0
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Solution.
(a) Since

1 =
∫ ∞

−∞
𝑓 (𝑥)𝑑𝑥 = 𝑐

∫ ∞

−∞
𝑒−𝑥/100𝑑𝑥,

we obtain

1 = 100𝑐 =⇒ 𝑐 =
1

100
.

Let 𝑋 be the random variable represent-
ing the function time (in hours) of a
computer. Hence, the probability that a
computer will function between 50 and
150 hours before breaking down is given
by

ℙ{50 < 𝑋 < 150}

=
∫ 150

50
𝑓 (𝑥)𝑑𝑥

=
1

100

∫ 150

50
𝑒−𝑥/100𝑑𝑥

= 𝑒−1/2 − 𝑒−3/2 ≈ 0.384.

(b) Similarly,

ℙ{𝑋 < 100} =
∫ 100

0
𝑓 (𝑥)𝑑𝑥

=
∫ 100

0

1
100

𝑒−𝑥/100𝑑𝑥

= 1 − 𝑒−1 ≈ 0.633. ■
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Distribution function of 𝑋

Proposition 6

Let 𝐹(𝑥) = ℙ(𝑋 ⩽ 𝑥) be the distribution function of 𝑋 with support (𝑎, 𝑏). Here, 𝑎 may
be −∞ and 𝑏 may be ∞.
(i) For any 𝑥 < 𝑦,

ℙ{𝑥 < 𝑋 ⩽ 𝑦} = 𝐹(𝑦) − 𝐹(𝑥) =
∫ 𝑦

𝑥
𝑓 (𝑢)𝑑𝑢.

(ii) 𝐹 is continuous on (𝑎, 𝑏).

(iii) For any 𝑥 ∈ (𝑎, 𝑏), ℙ{𝑋 = 𝑥} = 0.
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Proof.
(i) The first equality follows directly from the definition of cdf. For the second one,

𝐹(𝑦) − 𝐹(𝑥) =
∫ 𝑦

−∞
𝑓 (𝑢)𝑑𝑢 −

∫ 𝑥

−∞
𝑓 (𝑢)𝑑𝑢 =

∫ 𝑦

𝑥
𝑓 (𝑢)𝑑𝑢.

(ii) For any 𝑥 ∈ (𝑎, 𝑏) and 𝛿 > 0,

𝐹(𝑥 + 𝛿) − 𝐹(𝑥 − 𝛿) =
∫ 𝑥+𝛿

𝑥−𝛿
𝑓 (𝑢)𝑑𝑢.

Because 𝑓 is integrable, then it is boundeda, and thus, 𝐹 is continuous.

(iii) For any 𝑥 ∈ (𝑎, 𝑏),

ℙ(𝑋 = 𝑥) = 𝐹(𝑥) − 𝐹(𝑥−) = 0.

■
aWe have assumed 𝑓 is Riemann integrable.
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Distribution function

The relationship between the cumulative distribution function 𝐹 and the probability density
function 𝑓 is expressed by

𝐹(𝑥) = ℙ{𝑋 ⩽ 𝑥} =
∫ 𝑥

−∞
𝑓 (𝑡)𝑑𝑡.

Therefore, if 𝑓 is continuous,

𝑑

𝑑𝑥
𝐹(𝑥) = 𝑓 (𝑥).

Moreover,

ℙ(𝑥 < 𝑋 ⩽ 𝑦) = 𝑃(𝑥 ⩽ 𝑋 ⩽ 𝑦) = ... = 𝐹(𝑦) − 𝐹(𝑥).
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A more intuitive interpretation

𝑓 (𝑥)

ℙ{𝑥0 − 𝜀
2 ⩽ 𝑋 ⩽ 𝑥0 + 𝜀

2 } ≈ 𝜀 𝑓 (𝑥0)
𝑓 (𝑥0)

𝑥0

𝜀
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A pdf can take arbitrarily large value

Example 7

Consider a random variable 𝑋 with pdf

𝑓 (𝑥) =
{

1
2
√
𝑥

if 0 < 𝑥 ⩽ 1,
0 otherwise. 0.5 1

0.5

1

𝑥

𝑓 (𝑥)
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Functions of a random variable

■ Let 𝑋 be a continuous random variable
with support 𝕊.

■ Let 𝑔 : 𝕊 → ℝ be a function.

■ Suppose that we want to know the
distribution of 𝑔(𝑋).

■ The distribution function of 𝑌 = 𝑔(𝑋) is
given by

𝐹𝑌 (𝑦) = ℙ{𝑌 ⩽ 𝑦}
= ℙ{𝑔(𝑋) ⩽ 𝑦}
= ℙ{𝑋 ∈ 𝑔−1(−∞, 𝑦]}.

■ If 𝑔 is increasing, then

{𝑋 ∈ 𝑔−1(−∞, 𝑦]} = {𝑋 ⩽ 𝑔−1(𝑦)}.

𝑥

𝑦
𝑔(𝑥)

(𝑥, 𝑦)

𝑔−1(𝑦)

𝑌 = 𝑔(𝑋) ⩽ 𝑦

𝑋 ⩽ 𝑔−1 (𝑦)
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Examples

Example 8

If 𝑋 is continuous with distribution function 𝐹𝑋 and density function 𝑓𝑋 , find the
density function of 𝑌 = 2𝑋.

Solution.
We first calculate the distribution function
𝐹𝑌 of 𝑌 :

𝐹𝑌 (𝑦) = ℙ{𝑌 ⩽ 𝑦}
= ℙ{2𝑋 ⩽ 𝑦}

= ℙ{𝑋 ⩽ 𝑦

2
}

= 𝐹𝑋 (
𝑦

2
).

Therefore,

𝑓𝑌 (𝑦) =
𝑑

𝑑𝑦
𝐹𝑌 (𝑦) =

1
2
𝐹′𝑋 (

𝑦

2
)

=
1
2
𝑓𝑋 (

𝑦

2
). ■
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Examples

Example 9

If X is a continuous random variable with probability density 𝑓𝑋 , then the distribution
of 𝑌 = 𝑋2 is obtained as follows:

𝐹𝑌 (𝑦) = ℙ{𝑌 ⩽ 𝑦}
= ℙ{𝑋2 ⩽ 𝑦}
= ℙ{−√𝑦 ⩽ 𝑋 ⩽

√
𝑦}

= 𝐹𝑋 (
√
𝑦) − 𝐹𝑋 (−

√
𝑦),

and thus

𝑓𝑌 (𝑦) = 𝐹′𝑌 (𝑦) =
1

2√𝑦
{ 𝑓𝑌 (

√
𝑦) − 𝑓𝑌 (−

√
𝑦)}.
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Expectation of continuous random variables

Definition 10
Let 𝑋 be a continuous random variable with probability density 𝑓 . Then, the expectation
of 𝑋 is defined as

𝔼[𝑋] =
∫ ∞

−∞
𝑥 𝑓 (𝑥)𝑑𝑥

provided that
∫ ∞
−∞ |𝑥 | 𝑓 (𝑥)𝑑𝑥 < ∞.

Remark
If 𝑋 is supported on 𝕊, that is, 𝑓 (𝑥) = 0 when 𝑥 ∉ 𝕊, then

𝔼[𝑋] =
∫
𝕊

𝑥 𝑓 (𝑥)𝑑𝑥.
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Examples

Example 11

Find 𝔼[𝑋] when the density function of 𝑋 is

𝑓 (𝑥) =
{

2𝑥 0 ⩽ 𝑥 ⩽ 1
0 otherwise.

Solution.
Note that the support of 𝑋 is 𝕊 = [0, 1].
Therefore,

𝔼[𝑋] =
∫ 1

0
𝑥 𝑓 (𝑥)𝑑𝑥 =

∫ 1

0
2𝑥2𝑑𝑥

=
2
3
. ■ 𝑥

𝑓
𝑓 (𝑥 ) = 2𝑥

𝑥

𝑥 · 𝑓
𝑥 𝑓 (𝑥 ) = 2𝑥2
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Expectation of 𝑔(𝑋)

Proposition 12

If 𝑋 is a continuous random variable with probability density function 𝑓 (𝑥) on a support
𝕊, then, for any function 𝑔 : 𝕊 → ℝ,

𝔼[𝑔(𝑋)] =
∫
𝕊

𝑔(𝑥) 𝑓 (𝑥)𝑑𝑥.
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Proof of the preceding Proposition

We need to prove the following lemma:

Lemma 13
For a nonnegative continuous random variable 𝑌 ,

𝔼[𝑌 ] =
∫ ∞

0
ℙ{𝑌 > 𝑦}𝑑𝑦.
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Proof of the preceding Proposition

Proof.
Note that 𝑌 =

∫ 𝑌

0 𝑑𝑦 =
∫ ∞
0 𝟙(𝑦 < 𝑌 )𝑑𝑦, and taking expectations on both sides yields

𝔼[𝑌 ] = 𝔼

[∫ ∞

0
𝟙(𝑦 < 𝑌 )𝑑𝑦

]
=
∫ ∞

0
𝔼
[
𝟙(𝑌 > 𝑦)

]
𝑑𝑦 exchange the order of 𝔼 and

∫
=
∫ ∞

0
ℙ{𝑌 > 𝑦}𝑑𝑦. (because ℙ(𝐴) = 𝔼[𝟙(𝐴)]) ■
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𝑦

𝑓 (𝑦) ∫ ∞

0
𝑦 𝑓 (𝑦)𝑑𝑦

the
blu
e l
ev
el

𝑦

𝑓 (𝑦)
ℙ{𝑌 > 0}

…

𝑦

𝑓 (𝑦)
ℙ{𝑌 > 𝑦}

…
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Proof of Proposition 12.
We only prove for the case where 𝑔 ⩾ 0. By the above lemma with 𝑌 = 𝑔(𝑋),

𝔼[𝑔(𝑋)] =
∫ ∞

0
ℙ{𝑔(𝑋) > 𝑦}𝑑𝑦

=
∫ ∞

0

(∫
𝑥∈𝕊:𝑔 (𝑥 )>𝑦

𝑓 (𝑥)𝑑𝑥
)
𝑑𝑦

=
∫
𝕊

(∫
𝑦:0<𝑦<𝑔 (𝑥 )

1𝑑𝑦
)
𝑓 (𝑥)𝑑𝑥

=
∫
𝕊

𝑔(𝑥) 𝑓 (𝑥)𝑑𝑥. ■
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Examples

Example 14

The density function of 𝑋 is given by

𝑓 (𝑥) =
{

1 if 0 ⩽ 𝑥 ⩽ 1,
0 otherwise.

Find 𝔼[𝑒𝑋 ].

Solution.

𝔼[𝑒𝑋 ] =
∫ 1

0
𝑒𝑥𝑑𝑥 = 𝑒 − 1. ■
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Properties of expectation

Proposition 15

Let 𝑋 be a continuous random variable supported on 𝕊. For any 𝑎, 𝑏 ∈ ℝ and 𝑔, ℎ : 𝕊 →
ℝ,

𝔼[𝑎𝑔(𝑋) + 𝑏ℎ(𝑋)] = 𝑎𝔼[𝑔(𝑋)] + 𝑏𝔼[ℎ(𝑋)] .
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Linearity property of expectation

Proposition 16

More generally, let (𝛺,ℱ,ℙ) be a probability space, and let 𝑋 and 𝑌 be two random
variables. Then, for any 𝑎, 𝑏,

𝔼[𝑎𝑋 + 𝑏𝑌 ] = 𝑎𝔼[𝑋] + 𝑏𝔼[𝑌 ].
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Variance

Definition 17
The variance of a continuous random variable is defined exactly as it is for a discrete
random variable. If 𝑋 is a random variable with expected value 𝜇, then the variance of 𝑋
is defined as

Var(𝑋) = 𝔼[(𝑋 − 𝜇)2] = 𝔼[𝑋2] − (𝔼[𝑋])2.

Proposition 18

For any 𝑎, 𝑏 ∈ ℝ,

Var(𝑎𝑋 + 𝑏) = 𝑎2 Var(𝑋).
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Examples

Example 19

Suppose that the density function of 𝑋 is

𝑓 (𝑥) =
{

2𝑥 0 ⩽ 𝑥 ⩽ 1
0 otherwise.

Find Var(𝑋).

Solution.
We first compute 𝔼[𝑋2]:

𝔼[𝑋2] =
∫ ∞

−∞
𝑥2 𝑓 (𝑥)𝑑𝑥

=
∫ 1

0
2𝑥3𝑑𝑥 =

1
2
.

Hence,

Var(𝑋) = 1
2
−
(
2
3

)2
=

1
18

. ■
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Commonly used continuous random
variables
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Uniform random variables

Definition 20 (Uniform distribution)

A random variable 𝑋 is said to be uniformly
distributed over the interval (0, 1) if its probability
density function is given by

𝑓 (𝑥) =
{

1 0 < 𝑥 < 1,
0 otherwise.

𝑥

𝑓 (𝑥)

0 1

1

Note that for any 0 < 𝑎 < 𝑏 < 1,

ℙ{𝑎 ⩽ 𝑋 ⩽ 𝑏} =
∫ 𝑏

𝑎
𝑓 (𝑥)𝑑𝑥 = 𝑏 − 𝑎,

which is the length of the interval [𝑎, 𝑏].
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Uniform distribution

Definition 21 (General uniform distribution)
We say 𝑋 is a uniform random variable on the interval (𝛼, 𝛽), denoted by 𝑋 ∼
Uniform(𝛼, 𝛽), if the pdf of 𝑋 is given by

𝑓 (𝑥) =
{

1
𝛽−𝛼 𝛼 < 𝑥 < 𝛽

0 otherwise

𝑥

𝑓 (𝑥)

𝛼 𝛽

1
𝛽−𝛼

𝑥0

𝐹 (𝑥0 ) = ℙ{𝑋 ⩽ 𝑥0 }

𝑥

𝐹(𝑥)

1

𝑥0

𝐹(𝑥0)

𝛼 𝛽
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Properties of Uniform distribution

Proposition 22

Let 𝑋 ∼ Uniform(𝛼, 𝛽). Then

𝔼[𝑋] = 𝛼 + 𝛽

2
, Var(𝑋) = (𝛽 − 𝛼)2

12
.

Proof.
Note that

𝔼[𝑋] =
∫ 𝛽

𝛼

𝑥

𝛽 − 𝛼
𝑑𝑥 =

𝛼 + 𝛽

2
,

and

𝔼[𝑋2] =
∫ 𝛽

𝛼

𝑥2

𝛽 − 𝛼
𝑑𝑥 =

𝛼2 + 𝛼𝛽 + 𝛽2

3
,

and it follows that

Var(𝑋) = 𝔼[𝑋2] − (𝔼[𝑋])2 =
(𝛽 − 𝛼)2

12
,

as desired. ■
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Examples

Example 23

If 𝑋 ∼ Uniform(0, 10), find the probability that
(a) 𝑋 < 3,

(b) 𝑋 > 6,

(c) 3 < 𝑋 < 8.

Solution.

(a) ℙ{𝑋 < 3} =
∫ 3
−∞ 𝑓 (𝑥)𝑑𝑥 = 1

10
∫ 3
0 1𝑑𝑥 = 0.3.

(b) ℙ{𝑋 > 6} =
∫ ∞
6 𝑓 (𝑥)𝑑𝑥 = 1

10
∫ 10
6 1𝑑𝑥 = 0.4.

(c) ℙ{3 < 𝑋 < 8} =
∫ 8
3 𝑓 (𝑥)𝑑𝑥 = 1

10
∫ 8
3 1𝑑𝑥 = 0.5. ■
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Examples

Example 24

Buses arrive at a specified stop at 15-
minute intervals starting at 8 A.M. That
is, they arrive at 8, 8:15, 8:30, 8:45,
and so on. If a passenger arrives at
the stop at a time that is uniformly dis-
tributed between 8 and 8:30, find the
probability that he waits
(a) less than 5 minutes for a bus;

(b) more than 10 minutes for a bus.

1
2

3

4
567

8

9

10
11 12

Uniform
ly

d
istributed
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Solution.
Let 𝑋 denote the number of minutes past 8
that the passenger arrives at the stop. Then,
𝑋 ∼ Uniform(0, 30).
The passenger will have to wait less than
5 minutes if he arrives between 8 : 10 and
8 : 15 or between 8 : 25 and 8 : 30. Hence,
the desired probability for part (a) is

ℙ{10 < 𝑋 < 15} + ℙ{25 < 𝑋 < 30} = 1
3
.

Similarly, the probability for part (b) is

ℙ{0 < 𝑋 < 5} + ℙ{15 < 𝑋 < 20} = 1
3
. ■

1
2
3
4

567
8
9
10
11 12

1
2
3
4

567
8
9
10
11 12
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Normal distribution

Definition 25 (Normal distribution)

A random variable 𝑋 is said to have a nor-
mal distribution, or a Gaussian distribution,
with parameters 𝜇 and 𝜎2, denoted by

𝑋 ∼ 𝑁 (𝜇, 𝜎2),

if the pdf of 𝑋 is given by

𝑓 (𝑥) = 1
√

2𝜋𝜎
𝑒−

(𝑥−𝜇)2
2𝜎2 −∞ < 𝑥 < ∞.

Specially, if 𝑋 ∼ 𝑁 (0, 1), then 𝑋 is said to be
a standard normal random variable.

Figure: Gauss (高斯, 1777–1855)
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The normal curve

𝜇𝜇 − 𝜎𝜇 − 2𝜎𝜇 − 3𝜎 𝜇 + 𝜎 𝜇 + 2𝜎 𝜇 + 3𝜎

68%

95%

99.7%

Figure: The normal curve
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History and examples
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History and examples

Examples include:
■ the height of a man: In the UK, the mean male height is 1.778 m, and the standard

deviation 0.076 m;

■ the error made in measuring a physical quantity: length of a piece of string using a ruler;

■ exam scores: the SAT Reasoning Test has a distribution that is roughly unimodal and
symmetric and is designed to have an overall mean of about 500 and a standard
deviation of 100 for all test takers;

■ ...
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History and examples

Time

de Moivre
棣莫弗

1733

Laplace
拉普拉斯

1782

Gauss
高斯

1809

■ Abraham de Moivre (1733) used it to approximate probabilities associated with binomial
random variables when the binomial parameter 𝑛 is large.

■ Laplace calculated the normalizing constant
√

2𝜋𝜎 in 1782, and proved the CLT in 1810.

■ Gauss discovered the normal distribution in 1809 as a way to rationalize the method of
least squares.
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The proof of the normalizing constant

Proposition 26

We have

1
√

2𝜋

∫ ∞

−∞
𝑒−𝑥2/2𝑑𝑥 = 1.

Remark
More generally, for 𝑁 (𝜇, 𝜎2), we have

1
√

2𝜋𝜎

∫ ∞

−∞
𝑒−

(𝑥−𝜇)2
2𝜎2 𝑑𝑥 =

1
√

2𝜋

∫ ∞

−∞
𝑒−𝑦

2/2𝑑𝑦 = 1

if we take 𝑦 = 𝑥−𝜇
𝜎 .
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Proof.
Let 𝐼 =

∫ ∞
−∞ 𝑒−𝑥2/2𝑑𝑥. Then,

𝐼2 =

(∫ ∞

−∞
𝑒−𝑥2/2𝑑𝑥

) (∫ ∞

−∞
𝑒−𝑦

2/2𝑑𝑦

)
=
∫ ∞

−∞

∫ ∞

−∞
𝑒−(𝑥2+𝑦2 )𝑑𝑦𝑑𝑥.

Now, let 𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 𝜃, and it fol-
lows that 𝑑𝑦𝑑𝑥 = 𝑟𝑑𝜃𝑑𝑟. Therefore,

𝐼2 =
∫ ∞

0

∫ 2𝜋

0
𝑒−𝑟

2/2𝑟𝑑𝜃𝑑𝑟

= 2𝜋
∫ ∞

0
𝑟𝑒−𝑟

2/2𝑑𝑟

= −2𝜋𝑒−𝑟2/2
����∞
0

= 2𝜋. ■

𝑥

𝑦

𝑟

𝑟 cos 𝜃

𝑟 sin 𝜃
𝜃

Figure: Change to Polar Coodinates in a Double
Integral
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Linear transformation of 𝑋

Proposition 27

If 𝑋 ∼ 𝑁 (𝜇, 𝜎2), then for any 𝑎, 𝑏 ∈ ℝ,

𝑎𝑋 + 𝑏 ∼ 𝑁 (𝑎𝜇 + 𝑏, 𝑎2𝜎2).

Remark
In particular,

𝑋 − 𝜇

𝜎
∼ 𝑁 (0, 1).

If 𝑎 = 0, then 𝑎𝑋 + 𝑏 = 𝑏 is a constant. We can consider a constant as a normal random
variable with mean 𝑏 and variance 0.
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Linear transformation of 𝑋

Proof.
Without loss of generality, we assume that
𝑎 > 0. For 𝑎 < 0, the proof is similar. Let
𝑌 = 𝑎𝑋 + 𝑏. Note that

𝐹𝑌 (𝑥) = ℙ{𝑌 ⩽ 𝑥}
= ℙ{𝑎𝑋 + 𝑏 ⩽ 𝑥}

= ℙ{𝑋 ⩽ 𝑥 − 𝑏

𝑎
}

= 𝐹𝑋 (
𝑥 − 𝑏

𝑎
),

where 𝐹𝑋 is the cumulative distribution func-

tion of 𝑋 . By differentiation, the pdf of 𝑌 is
given by

𝑓𝑌 (𝑥) =
1
𝑎
𝑓𝑋 (

𝑥 − 𝑏

𝑎
)

=
1

√
2𝜋𝑎𝜎

exp
{
−−(𝑥 − 𝑏 − 𝑎𝜇)2

2(𝑎𝜎)2

}
,

which shows that

𝑌 ∼ 𝑁 (𝑎𝜇 + 𝑏, 𝑎2𝜎2). ■
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Expectation and variance of 𝑁 (𝜇, 𝜎2)

Proposition 28

If 𝑋 ∼ 𝑁 (𝜇, 𝜎2), then

𝔼[𝑋] = 𝜇, Var(𝑋) = 𝜎2.
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Expectation and variance of 𝑁 (𝜇, 𝜎2)

Proof of the expectation.

Let 𝑍 = 𝑋−𝜇
𝜎 . It suffices to prove 𝔼[𝑍] = 0 and Var(𝑍) = 1. To this end, note that

𝑍 ∼ 𝑁 (0, 1), we have

𝔼[𝑍] = 1
√

2𝜋

∫ ∞

−∞
𝑥𝑒−𝑥2/2𝑑𝑥

= − 1
√

2𝜋
𝑒−𝑥2/2

���∞
−∞

= 0. ■
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Expectation and variance of 𝑁 (𝜇, 𝜎2)

Proof of the variance.
For the variance,

𝔼[𝑍2] = 1
√

2𝜋

∫ ∞

−∞
𝑥2𝑒−𝑥2/2𝑑𝑥

= − 1
√

2𝜋

(∫ ∞

−∞
𝑥𝑑𝑒−𝑥2/2

)
(integration by parts)

= − 1
√

2𝜋

(
𝑥𝑒−𝑥2/2

���∞
−∞

−
∫ ∞

−∞
𝑒−𝑥2/2𝑑𝑥

)
= 1. ■
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The function 𝛷(𝑥)

■ It is customary to denote the cumulative distribution function of 𝑁 (0, 1) by 𝛷(𝑥):

𝛷(𝑥) = 1
√

2𝜋

∫ 𝑥

−∞
𝑒−𝑡

2/2𝑑𝑡.

𝑧 .00
.01

.02 .03 .04 .05

.0 .5000 .5040 .5080 .5120 .5160 .5199

.1 .5398 .5438 .5478 .5517 .5557 .5596

.2 .5793 .5832 .5874 .5910 .5948 .5987

.3 .6179 .6217 .6255 .6293 .6331 .6368

.4 .6554 .6591 .6628 .6664 .6700 .6736

.5 .6915 .6950 .6985 .7019 .7054 .7088

.6 .7257 .7291 .7324 .7357 .7389 .7422

.7 .7580 .7611 .7642 .7673 .7704 .7734

.8
.7881

.7910
.7939 .7967 .7995 .8023

.9 .8159 .8186 .8212 .8238 .8264 .8289
−3 −2 −1 1 2 3

0.2

0.4

0.6

0.8

1

𝛷(0.81) ≈ 0.7910

𝑥

𝛷(𝑥)
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CDF of 𝑁 (0, 1)

■ For negative 𝑥, 𝛷(𝑥) can be obtained from the following relationship:

𝛷(−𝑥) = 1 −𝛷(𝑥), −∞ < 𝑥 < ∞.

■ For example,

𝛷(0.21) = 0.5832, 𝛷(−0.21) = 1 −𝛷(0.21) = 0.4168.

■ If 𝑋 ∼ 𝑁 (𝜇, 𝜎2), then

ℙ{𝑋 ⩽ 𝑎} = ℙ

{
𝑋 − 𝜇

𝜎
⩽

𝑎 − 𝜇

𝜎

}
= 𝛷

(
𝑎 − 𝜇

𝜎

)
.
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R codes

■ We can use R codes to calculate the probabilities: for example, if 𝑍 ∼ 𝑁 (0, 1),
ℙ{𝑍 ⩽ 0.81} equals

pnorm(0.81)
[1] 0.7910299

■ ℙ{𝑍 > 0.81} equals
pnorm(0.81, lower=FALSE)
[1] 0.2089701

■ If 𝑋 ∼ 𝑁 (3, 22), then ℙ{𝑋 ⩽ 5} equals
pnorm(5, mean=3, sd=2)
[1] 0.8413447
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Examples

Example 29

If 𝑋 ∼ 𝑁 (𝜇 = 3, 𝜎2 = 9), find
(a) ℙ{2 < 𝑋 < 5};

(b) ℙ{𝑋 > 0};

(c) ℙ{|𝑋 − 3| > 6}.

Solution.
(a) Note that with 𝑍 = (𝑋 − 3)/3 ∼ 𝑁 (0, 1),

ℙ{2 < 𝑋 < 5} = ℙ

{
2 − 3

3
<

𝑋 − 3
3

<
5 − 3

3

}
= ℙ

{
−1

3
< 𝑍 <

2
3

}
= 𝛷

(
2
3

)
−𝛷

(
−1

3

)
≈ 0.3779. ■
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Examples

Example 30

An expert witness in a paternity suit testifies that the length (in days) of human
gestation is approximately normally distributed with parameters 𝜇 = 270 and 𝜎2 =
100. The defendant in the suit is able to prove that he was out of the country
during a period that began 290 days before the birth of the child and ended 240
days before the birth. If the defendant was, in fact, the father of the child, what is
the probability that the mother could have had the very long or very short gestation
indicated by the testimony?

在一个亲子诉讼案件中，一名专家证人作证说，人类妊娠的长度（以天为单位）近似于正
态分布，其参数为 𝜇 = 270，𝜎2 = 100。被告能够证明他在孩子出生前的 290 天到 240 天
期间一直在国外。如果被告实际上是孩子的父亲，那么母亲可能出现在证言中所述的非常
长或非常短的妊娠期的概率是多少？
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Exponential distribution

Definition 31 (Exponential distribution)

A continuous random variable 𝑋 is said to
follow an exponential distribution with pa-
rameter 𝜆 > 0, denoted by 𝑋 ∼ Exp(𝜆), if
its pdf is

𝑓 (𝑥) =
{
𝜆𝑒−𝜆𝑥 𝑥 ⩾ 0,
0 𝑥 < 0.

𝑓 (𝑥)

Figure: Exponential density
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Distribution function

Proposition 32

The CDF of 𝑋 ∼ Exp(𝜆) is

𝐹(𝑥) =
{

1 − 𝑒−𝜆𝑥 𝑥 ⩾ 0,
0 𝑥 < 0.

Proof.
For any 𝑥 ⩾ 0,

𝐹(𝑥) = ℙ{𝑋 ⩽ 𝑥}

=
∫ 𝑥

0
𝜆𝑒−𝜆𝑡𝑑𝑡

= 1 − 𝑒−𝜆𝑥 . ■

𝐹(𝑥)
1

Figure: CDF of Exp(𝜆)
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How to use Exp(𝜆)?

■ In practice, the exponential distribution often arises as the distribution of the amount of
time until some specific event occurs.

■ The amount of time (starting from now) until an earth quake occurs.

■ The waiting time until you receive a phone call.

■ The time length between mutations on a DNA strand (基因串突变).

■ How long it takes for a bank teller etc. to serve a customer.

■ ...
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Examples

Example 33

Suppose that the length of a phone call
in minutes is an exponential random
variable with parameter 𝜆 = 0.1. If
someone arrives immediately ahead of
you at a public telephone booth, find the
probability that you will have to wait
(a) more than 10 minutes;

(b) between 10 and 20 minutes.
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Solution.
Let 𝑋 denote the length of the call made by the person in the booth. Then, 𝑋 ∼ Exp(0.1).
(a) The probability that you have to wait more than 10 minutes is

ℙ{𝑋 > 10} = 1 − 𝐹(10) = 𝑒−(0.1) (10) = 𝑒−1 ≈ 0.368.

(b) The probability that you will wait between 10 and 20 minutes is

ℙ{10 < 𝑋 < 20} = 𝐹(20) − 𝐹(10)
= 𝑒−(0.1) (10) − 𝑒−(0.1) (20)

= 𝑒−1 − 𝑒−2

≈ 0.233. ■
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Expectation and variance

Proposition 34

Let 𝑋 ∼ Exp(𝜆). Then

𝔼[𝑋] = 1
𝜆
, Var(𝑋) = 1

𝜆2 .

Remark
For example, in the bank customer example, the parameter 𝜆 can be understood as the
average number of customers that a banker serves in a unit time interval, and thus the
average waiting time is 1/𝜆.
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Memoryless property

Proposition 35

If 𝑋 ∼ Exp(𝜆), then it is memoryless, that is,

ℙ{𝑋 > 𝑠 + 𝑡 |𝑋 > 𝑡} = ℙ{𝑋 > 𝑠} for any 𝑠, 𝑡 > 0.

Proof.
For any 𝑠, 𝑡 > 0, since {𝑋 > 𝑠 + 𝑡} ⊂ {𝑋 > 𝑡}, it follows that

ℙ({𝑋 > 𝑠 + 𝑡} ∩ {𝑋 > 𝑡}) = ℙ{𝑋 > 𝑠 + 𝑡} = 𝑒−𝜆 (𝑠+𝑡) = ℙ{𝑋 > 𝑠}ℙ{𝑋 > 𝑡}.

Then, it follows from the definition of conditional probability that

ℙ{𝑋 > 𝑠 + 𝑡 |𝑋 > 𝑡} = 𝑒−𝜆 (𝑠+𝑡)

𝑒−𝜆𝑡
= 𝑒−𝜆𝑠 = ℙ{𝑋 > 𝑠}. ■
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Examples

Example 36

Suppose that the number of miles that a car can run before its battery wears out
is exponentially distributed with an average value of 10,000 miles. If a person
desires to take a 5000-mile trip, what is the probability that he or she will be able
to complete the trip without having to replace the car battery?
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Solution.
Let 𝑋 be the lifetime (in 1000 miles) of the car, and it follows that 𝔼[𝑋] = 10 which further
implies that 𝜆 = 0.1. Let 𝑥 be the number of miles (in 1000 miles) that the battery had
been in use prior to the start of the trip. The desired probability is

ℙ{𝑋 > 𝑥 + 5 |𝑋 > 𝑥} = 1 − 𝐹(5) = 𝑒−(0.1) (5) = 𝑒−0.5 ≈ 0.604. ■

5

𝑓 (𝑥)

𝑡 𝑡 + 5

𝑓 (𝑥)
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Further reading

[1] Sheldon M. Ross (谢尔登·M.罗斯).

A first course in probability (概率论基础教程): Chapter 5.

10th edition (原书第十版),机械工业出版社
[2] 李贤平.

概率论基础: Chapters 3 and 4.

第三版,高等教育出版社
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