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Learning Objectives: Random Variables

■ Define a random variable and explain how it relates to a probability distribution.

■ Distinguish between discrete and continuous random variables and give examples of
each.

■ Define the probability mass function (PMF) and probability density function (PDF) of a
random variable, and use them to compute probabilities.

■ Define the cumulative distribution function (CDF) of a random variable, and use it to
compute probabilities and quantiles.

■ Define the expected value (or mean) and variance of a random variable, and compute
them for both discrete and continuous random variables.
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Learning Objectives: Random Variables

■ Explain the properties of expected value and variance, including linearity and additivity,
and use them to compute expected values and variances of linear combinations of
random variables.

■ Define covariance and correlation between two random variables, and explain how they
relate to independence.
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Random variables
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Introduction

■ How long do products last?

■ Should you expect your computer to die just after the warranty runs out?

■ How can you reduce your risk for developing hepatitis?

■ Businesses, medical researchers, and other scientists all use probability to determine
risk factors to help answer questions like these.

To do that, they model the probability of outcomes using a special kind of variable — a random
variable. Using random variables can help us talk about and predict random behavior.
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What is the average?
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Why random variables

■ Random variables allow us to quantify and analyze the outcomes of random events or
experiments in a mathematical way.

■ They provide a way to convert the outcomes of a random experiment into numbers,
which can be manipulated using mathematical operations such as addition and
multiplication.

■ Random variables allow us to calculate probabilities of events associated with the
outcomes of a random experiment, such as the probability of getting a certain result or
the probability of a certain range of outcomes.

■ They allow us to compute summary statistics such as means, variances, and
correlations, which provide a more comprehensive understanding of the distribution of
outcomes than just looking at individual outcomes.
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Why random variables

■ Random variables provide a framework for modeling and analyzing complex systems
and processes that involve random events or inputs.
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Definition of random variables

Definition 1 (Random variable)
A random variable is a real-valued function defined on the sample space.

A random variable is a mapping from the outcomes in the sample space to numbers on the
real line. We can think of a random variable 𝑋 as a translator that translates a statement
to a number.

𝛺

ℝ

𝜔

𝑋 (𝜔)

We usually use capital letters 𝑋, 𝑌, 𝑍,𝑊 etc. to represent random variables.

𝑋 : 𝛺 → ℝ
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Example

Example 2 (Coin tossing)

Suppose that our experiment consists of tossing 3 fair coins. If we let 𝑌 denote the
number of tails that appear. Figure out the sample space and the definition of 𝑌 .
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Example

Solution.
The sample space can be written as 𝛺 = {𝑇𝑇𝑇, 𝑇𝑇𝐻, 𝑇𝐻𝑇, 𝑇𝐻𝐻, 𝐻𝑇𝑇, 𝐻𝑇𝐻, 𝐻𝐻𝑇, 𝐻𝐻𝐻},
and the random variable 𝑌 : 𝛺 → ℝ can be defined as

𝑌 (𝜔) =


3 if 𝜔 = 𝑇𝑇𝑇,

2 if 𝜔 ∈ {𝑇𝑇𝐻, 𝑇𝐻𝑇, 𝐻𝑇𝑇},
1 if 𝜔 ∈ {𝑇𝐻𝐻, 𝐻𝑇𝐻, 𝐻𝐻𝑇},
0 if 𝜔 = 𝐻𝐻𝐻.

■
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Example

Sample Space 𝛺 Value Space ℝ

𝑇𝑇𝑇

𝑇𝑇𝐻

𝑇𝐻𝑇

𝐻𝑇𝑇

𝑇𝑇𝐻

𝐻𝑇𝐻

𝐻𝐻𝑇

𝐻𝐻𝐻

ℝ0 1 2 3
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Random Variables - Real World Examples

Example 3 (Tossing a Coin)

Suppose we perform the simple experiment of tossing a fair coin.
■ The sample space of this experiment is 𝛺 = {𝐻, 𝑇}.

■ The 𝜎-field is the power set of 𝛺, which is ℱ = {∅, {𝐻}, {𝑇}, {𝐻, 𝑇}}.

■ We can define a random variable 𝑋 that takes the value 1 if the outcome is
heads and 0 otherwise. So, 𝑋 (𝐻) = 1 and 𝑋 (𝑇) = 0.
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Random Variables - Real World Examples

Example 4 (Rolling a Die)

Suppose we perform the experiment of rolling a six-sided die.
■ The sample space of this experiment is 𝛺 = {1, 2, 3, 4, 5, 6}.

■ The 𝜎-field is the power set of 𝛺.

■ We can define a random variable 𝑋 that takes the value 1 if the outcome is an
even number and 0 otherwise. So, 𝑋 (2) = 𝑋 (4) = 𝑋 (6) = 1 and 𝑋 (1) = 𝑋 (3) =
𝑋 (5) = 0.
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Random Variables - Real World Examples

Example 5 (Weather Forecast)

Suppose we are interested in the weather condition (sunny, cloudy, rainy) of a
certain day in a city.
■ The sample space of this experiment is 𝛺 = {sunny, cloudy, rainy}.

■ The 𝜎-field is the power set of 𝛺.

■ We can define a random variable 𝑋 that takes the value 1 if the weather is
sunny and 0 otherwise. So, 𝑋 (sunny) = 1, 𝑋 (cloudy) = 𝑋 (rainy) = 0.
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Probability and random varibles

Because the value of a random variable is determined by the outcome of the experiment, we
may assign probabilities to the possible values of the random variable.

Example 6 (Coin tossing)

Let ℙ be the classical probability defined on 𝛺. We have

ℙ{𝑌 = 3} = ℙ{𝑇𝑇𝑇} = 1
8

ℙ{𝑌 = 2} = ℙ{𝑇𝑇𝐻, 𝑇𝐻𝑇, 𝐻𝑇𝑇} = 3
8
,

ℙ{𝑌 = 1} = ℙ{𝑇𝐻𝐻, 𝐻𝑇𝐻, 𝐻𝐻𝑇} = 3
8
,

ℙ{𝑌 = 0} = ℙ{𝐻𝐻𝐻} = 1
8
.
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Example

Example 7

A life insurance agent has 2 elderly clients, each of whom has a life insurance policy
that pays $100,000 upon death. Let 𝐴 be the event that the younger one dies in the
following year, and let 𝐵 be the event that the older one dies in the following year.
Assume that 𝐴 and 𝐵 are independent, with respective probabilities ℙ(𝐴) = .05 and
ℙ(𝐵) = .10. If 𝑋 denotes the total amount of money (in units of $100, 000) that
will be paid out this year to any of these clients’ beneficiaries, then 𝑋 is a random
variable that takes on one of the possible values 0, 1, 2 with respective probabilities

ℙ(𝑋 = 0) = ℙ(𝐴𝑐 ∩ 𝐵𝑐) = ℙ(𝐴𝑐) ℙ(𝐵𝑐) = (0.95)(0.9) = 0.855,
ℙ(𝑋 = 1) = ℙ(𝐴 ∩ 𝐵𝑐) + ℙ(𝐴𝑐 ∩ 𝐵) = (0.05)(0.9) + (0.95) (0.1) = 0.140,
ℙ(𝑋 = 2) = ℙ(𝐴 ∩ 𝐵) = (0.05)(0.1) = 0.005.

17



Example

Sample space 𝛺1

D L

Sample space 𝛺2

D L

Product space
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Discrete random variables
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Discrete and continuous random variables

Definition 8 (Discrete random varibles)
A random variable is called discrete if its support (the set of values that it can take, usually
denoted by 𝕊) is either finite or countably infinite.

Continuous random variables, an informal definition
A random variable is typically a continuous random variable if there are no “gaps” in its
support.

Example 9

(a) Lifetime of a bulb.

(b) Number of customers visiting a bank during 9am to 10 am.

(c) The height of a random selected person...
20



Examples

Example 10 (Ball selection)

Three balls are to be randomly selected
without replacement from an urn con-
taining 20 balls numbered 1 through
20. If we bet that at least one of
the balls that are drawn has a num-
ber as large as or larger than 17, what
is the probability that we win the bet?
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Solution.
Let 𝑋 denote the largest number selected. Then, 𝑋 is a random variable taking on one of
the values 3, 4, . . . , 20. If we assume that each of the

(20
3
)
possible selections are equally

likely to occur, then

ℙ{𝑋 = 𝑖} =
(𝑖−1

2
)(20

3
) for 𝑖 = 3, . . . , 20.

Therefore, let 𝐸 be the event that we win the bet, then 𝐸 = {𝑋 ⩾ 17}, and

ℙ(𝐸) = ℙ{𝑋 ⩾ 17} = ℙ{𝑋 = 17} + · · · + ℙ{𝑋 = 20} ≈ 0.508. ■
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Examples

Example 11 (Coin flipping)

Independent trials consisting of the flipping of a
coin having probability 𝑝 of coming up heads are
continually performed until either a head occurs
or a total of 𝑛 flips is made. If we let 𝑋 denote
the number of times the coin is flipped, then 𝑋
is a random variable taking on one of the values
1, 2, 3, . . . , 𝑛 with respective probabilities

ℙ{𝑋 = 𝑘} = (1 − 𝑝)𝑘−1𝑝 for 𝑘 = 1, . . . , 𝑛 − 1,

and ℙ{𝑋 = 𝑛} = (1 − 𝑝)𝑛−1.
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Probability mass function
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Probability mass function

Definition 12
Let 𝕊 be the support of 𝑋 . The probability mass function 𝑝 of 𝑋 is defined as 𝑝 : 𝕊 → [0, 1],

𝑝(𝑎) = ℙ{𝑋 = 𝑎} for 𝑎 ∈ 𝕊.

Proposition 13

Assume that 𝑋 is a discrete random variable taking values on the set 𝕊 = {𝑠𝑖, 𝑖 ∈ 𝐽},
then
(i) Non-negativity: 𝑝(𝑠𝑖) ⩾ 0 for 𝑖 ∈ 𝐽 and 𝑝(𝑎) = 0 for 𝑎 ∈ ℝ \ 𝕊.

(ii) Normalization:
∑
𝑖∈𝐽

𝑝(𝑠𝑖) = 1.

25



Graphical format of 𝑝

It is often instructive to present the probability mass function in a graphical format by plotting
𝑝(𝑠𝑖) on the 𝑦-axis against 𝑠𝑖 on the 𝑥-axis.

Example 14

If the probability mass function of 𝑌 is

ℙ{𝑌 = 0} = ℙ{𝑌 = 3} = 1
8
,

ℙ{𝑌 = 1} = ℙ{𝑌 = 2} = 3
8
,

then the graph is
𝑦

𝑝(𝑦)

0 1 2 3

1/8

3/8 3/8

1/8
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Table format of 𝑝

The probability distribution of 𝑋 can also be listed in a table.

Example (Cont’d)
For example, the probability distribution of 𝑌 is the following table:

𝑦 0 1 2 3

𝑝(𝑦) 1
8

3
8

3
8

1
8
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Example

Example 15

The probability mass function of a random variable 𝑋 is given by

𝑝(𝑖) = 𝑐
𝜆 𝑖

𝑖!
, 𝑖 = 0, 1, 2, . . .

where 𝜆 is some positive value. Find
(a) the value of 𝑐,

(b) ℙ{𝑋 = 0}, and

(c) ℙ{𝑋 > 2}.
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Solution.
(a) By the normalization property, we have

𝑐
∞∑
𝑖=1

𝜆 𝑖

𝑖!
= 1

which implies that
𝑐𝑒𝜆 = 1 =⇒ 𝑐 = 𝑒−𝜆 .

(b) We have

ℙ{𝑋 = 0} = (𝑒−𝜆) 𝜆
0

0!
= 𝑒−𝜆 .

(c) Because {𝑋 > 2} = ({𝑋 = 0, 1, 2})𝑐, we
have

ℙ{𝑋 > 2}
= 1 − ℙ{𝑋 = 0}
− ℙ{𝑋 = 1} − ℙ{𝑋 = 2}

= 1 − 𝑒−𝜆 − 𝜆𝑒−𝜆 − 𝜆2𝑒−𝜆

2
. ■
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PMF and histograms

■ A histogram is a plot that shows the frequency of a state.

■ The pmf is an ideal histogram.
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Distribution function
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Distribution function

Definition 16 (Cumulative distribution function)
The cumulative distribution function 𝐹 (or briefly, distribution function) of 𝑋 is defined by

𝐹(𝑥) = ℙ{𝑋 ⩽ 𝑥}.

Remark
If 𝑋 is a discrete random variable with support 𝕊 = {𝑠𝑖, 𝑖 ∈ 𝐽} and probability mass function
𝑝, then the distribution function can be expressed by

𝐹(𝑥) =
∑

𝑠𝑖∈𝕊:𝑠𝑖⩽𝑥
𝑝(𝑠𝑖) =

∑
𝑖∈𝐽:𝑠𝑖⩽𝑥

𝑝(𝑠𝑖) =
∑
𝑖∈𝐽

[𝑝(𝑠𝑖)I(𝑠𝑖 ⩽ 𝑥)] .
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Examples

Example 17

Assume that the probability distribution
of 𝑌 is

𝑦 0 1 2 3
𝑝(𝑦) 0.125 0.375 0.375 0.125

If 𝑥 = −1,

𝐹(−1) = ℙ{𝑌 ⩽ −1} = ℙ(∅) = 0.

If 𝑥 = 1,

𝐹(1) = ℙ{𝑌 ⩽ 1} = 𝑝(0) + 𝑝(1) = 1
2
.

If 𝑥 = 2.3, then

𝐹(2.3) = ℙ{𝑌 ⩽ 2.3}

= 𝑝(0) + 𝑝(1) + 𝑝(2) = 7
8
.

If 𝑥 = 4, then

𝐹(4) = ℙ{𝑌 ⩽ 4} = ℙ(𝛺) = 1.

We can calculate 𝐹(𝑥) for all 𝑥 ∈ ℝ, not
just the support 𝕊.
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Examples

Example (Cont’d)

We have

𝐹(𝑥) =



0 if 𝑥 < 0,
0.125 if 0 ⩽ 𝑥 < 1,
0.5 if 1 ⩽ 𝑥 < 2,
0.875 if 2 ⩽ 𝑥 < 3,
1 if 𝑥 ⩾ 3.

This function is depicted graphically as
shown on the right.

𝑥

𝐹(𝑥)

0 1 2 3

0.125

0.500

0.875
1.000
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Properties of distribution functions

Proposition 18

If 𝑋 is a random variable, then its CDF 𝐹 has the following properties:
(i) The CDF is non-decreasing.

(ii) The CDF is right continuous.

(iii) The maximum of the CDF is 𝐹(∞) := lim𝑥→∞ 𝐹(𝑥) = 1.

(iv) The minimum of the CDF is 𝐹(−∞) := lim𝑥→−∞ 𝐹(𝑥) = 0.
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Proof.
(i) If 𝑥 ⩽ 𝑦, then {𝑋 ⩽ 𝑥} ⊂ {𝑋 ⩽ 𝑦}, and by the monotone property of probability,

ℙ{𝑋 ⩽ 𝑥} ⩽ ℙ{𝑋 ⩽ 𝑦} =⇒ 𝐹(𝑥) ⩽ 𝐹(𝑦).

(ii) For any given 𝑥0, and let {𝑥𝑛} be an arbitrary decreasing sequence with limit 𝑥0, and
we shall prove that 𝐹(𝑥𝑛) → 𝐹(𝑥0) as 𝑛 → ∞. To this end, define 𝐸𝑛 = {𝑋 ⩽ 𝑥𝑛} and
𝐸 = {𝑋 ⩽ 𝑥0}. Then, it follows that 𝐸𝑛 ↓ 𝐸. By the monotone continuity property of
probability, we have

ℙ(𝐸𝑛) → ℙ(𝐸) as 𝑛 → ∞,

which is equivalent to 𝐹(𝑥𝑛) → 𝐹(𝑥0) as 𝑛 → ∞.
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Proof.
(iii) It is sufficient to prove that, for every increasing sequence {𝑥𝑛, 𝑛 ⩾ 1} such that

lim𝑛↑∞ 𝑥𝑛 = ∞, we have lim𝑛→∞ 𝐹(𝑥𝑛) = 1. To this end, let 𝐸𝑛 = {𝑋 ⩽ 𝑥𝑛} and
𝐸 = {𝑋 < ∞}, then 𝐸𝑛 ↑ 𝐸. By the monotone continuity property of probability again,
we have

ℙ(𝐸𝑛) → ℙ(𝐸) = ℙ{𝑋 < ∞} = ℙ{𝛺} = 1.

(iv) Similar to (iii). The proof is omitted and left as an exercise. ■
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Properties of distribution

Let 𝑎 and 𝑏 be two real numbers such that 𝑎 < 𝑏. Then

ℙ{𝑎 < 𝑋 ⩽ 𝑏} = 𝐹(𝑏) − 𝐹(𝑎).

Proof.
Define 𝐴 = {𝑋 ⩽ 𝑎} and 𝐵 = {𝑋 ⩽ 𝑏}. As 𝑎 < 𝑏, it follows that 𝐴 ⊂ 𝐵 and 𝐵 \ 𝐴 = {𝑎 <
𝑋 ⩽ 𝑏}. Therefore,

ℙ{𝑎 < 𝑋 ⩽ 𝑏} = ℙ(𝐵) − ℙ(𝐴) = 𝐹(𝑏) − 𝐹(𝑎). ■
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Properties of distribution function

Proposition 19

For any 𝑏 ∈ ℝ, we have

ℙ{𝑋 < 𝑏} = 𝐹(𝑏−) = lim
𝑛→∞

𝐹(𝑏 − 1
𝑛
).

Proof.
Let 𝐴𝑛 = {𝑋 ⩽ 𝑏 − 1

𝑛 }. Then {𝐴𝑛, 𝑛 ⩾ 1} is an increasing sequence of events with limit

lim
𝑛→∞

𝐴𝑛 =
∞⋃
𝑛=1

{𝑋 ⩽ 𝑏 − 1
𝑛
} = {𝑋 < 𝑏}.

and thus
ℙ{𝑋 < 𝑏} = lim

𝑛→∞
ℙ(𝐴𝑛) = lim

𝑛→∞
𝐹(𝑏 − 1

𝑛
) = 𝐹(𝑏−). ■
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Properties of distribution function

Proposition 20

For any 𝑎 ∈ ℝ,

ℙ{𝑋 ⩾ 𝑎} = 1 − 𝐹(𝑎−), ℙ{𝑋 = 𝑎} = 𝐹(𝑎) − 𝐹(𝑎−).

Specially, if 𝑋 is a discrete random variable with pmf 𝑝 and support 𝕊 = {𝑠 𝑗, 𝑗 ∈ 𝐽}, then
𝐹(𝑥) has jumps of size 𝑝(𝑠 𝑗) at 𝑠 𝑗.
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Examples

Example 21

The distribution function of the random
variable 𝑋 is given by

𝐹(𝑥) =



0 𝑥 < 0
𝑥
2 0 ⩽ 𝑥 < 1
2
3 1 ⩽ 𝑥 < 2
11
12 2 ⩽ 𝑥 < 3
1 𝑥 ⩾ 3.

Compute (a) ℙ{𝑋 < 3}, (b) ℙ{𝑋 > 1/2},
(c) ℙ{𝑋 = 1} and (d) ℙ{2 < 𝑋 ⩽ 4}.

𝑥

𝐹(𝑥)
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Solution.
(a) ℙ{𝑋 < 3} = 𝐹(3−) = 11

12 .

(b) ℙ{𝑋 > 1
2 } = 1 − ℙ{𝑋 ⩽ 1

2 } = 1 − 𝐹( 1
2 ) =

3
4 .

(c) ℙ{𝑋 = 1} = 𝐹(1) − 𝐹(1−) = 2
3 − 1

2 = 1
6 .

(d) ℙ(2 < 𝑋 ⩽ 4) = 𝐹(4) − 𝐹(2) = 1 − 11
12 = 1

12 . ■
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Functions of random variables
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Functions of random variables

Example 22

Imagine that two basketball teams (A and B) are playing a seven-game match, and
let 𝑋 be the number of wins for team A. Let 𝑔(𝑥) = 7 − 𝑥, and let ℎ(𝑥) = 1 if 𝑥 ⩾ 4
and ℎ(𝑥) = 0 if 𝑥 < 4.Then 𝑌 := 𝑔(𝑋) = 7 − 𝑋 is the number of wins for team B, and
𝑍 := ℎ(𝑋) is the indicator of team A winning the majority of the games. Since 𝑋 is
an r.v., both 𝑔(𝑋) and ℎ(𝑋) are also r.v.’s.
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A picture

𝜔 ℝ

ℝ

𝑥

𝑦

𝑋

𝑔
𝑌

Definition 23 (Function of an random variable)
For the probability space (𝛺,ℱ,ℙ), an random variable 𝑋 on 𝛺 and a function 𝑔 : ℝ → ℝ,
𝑌 = 𝑔(𝑋) is the random variable that maps 𝜔 ∈ 𝛺 to 𝑌 (𝜔) = 𝑔(𝑋 (𝜔)).
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pmf of 𝑔(𝑋)

Given a discrete random variable 𝑋 with a pmf 𝑝, what is the pmf of 𝑌 = 𝑔(𝑋)?

■ If 𝑔 is one-to-one, then
ℙ{𝑌 = 𝑦} = ℙ{𝑔(𝑋) = 𝑦} = ℙ{𝑋 = 𝑔−1(𝑦)}.

■ Example: If 𝑔(𝑥) = 𝑥 + 2, then 𝑔−1(𝑦) = 𝑦 − 2.

■ If 𝑔 is not one-to-one, we can define the general inverse map (not necessarily a
function) by

𝑔−1(𝐵) = {𝑥 ∈ ℝ |𝑔(𝑥) ∈ 𝐵}, for any subset 𝐵 ⊂ ℝ.

■ For example, if 𝑔(𝑥) = 𝑥2, then
𝑔−1({4}) = {−2, 2}, 𝑔−1([1, 9]) = [−3,−1] ∪ [1, 3].

■ Then,
ℙ{𝑌 = 𝑦} = ℙ{𝑋 ∈ 𝑔−1({𝑦})} =

∑
𝑥:𝑔 (𝑥 )=𝑦

𝑝(𝑥).
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pmf of 𝑔(𝑋)

Theorem 24
Let 𝑋 be a discrete random variable with support 𝕊 and 𝑔 : ℝ → ℝ. Then the support
of 𝑔(𝑋) is 𝑔(𝕊) and the pmf of 𝑔(𝑋) is

ℙ{𝑔(𝑋) = 𝑦} =
∑

𝑥:𝑔 (𝑥 )=𝑦
ℙ{𝑋 = 𝑥}.

Example 25

Assume that 𝑋 has support 𝕊 = {−2,−1, 0, 2, 3} and has the following pmf: 𝑝(−2) =
1
6 , 𝑝(−1) = 1

4 , 𝑝(0) = 1
12 , 𝑝(2) = 1

8 , 𝑝(3) = 3
8 . Let 𝑔(𝑥) = 𝑥2. Then 𝑌 = 𝑔(𝑋) has

support 𝑔(𝕊) = {0, 1, 4, 9}, and the pmf 𝑝𝑌 is

𝑝𝑌 (0) = ℙ{𝑋 = 0} = 1
12

, 𝑝𝑌 (1) = ℙ{𝑋 = −1} = 1
4
,

𝑝𝑌 (4) = ℙ{𝑋 ∈ {−2, 2}} = 7
24

, 𝑝𝑌 (9) = ℙ{𝑋 = 3} = 3
8
.
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Expected value
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Introduction

Example 26

Mary is deciding whether to book the cheaper flight home from college after her
final exams, but she’s unsure when her last exam will be. She thinks there is only
a 20% chance that the exam will be scheduled after the last day she can get a seat
on the cheaper flight. If it is and she has to cancel the flight, she will lose $300. If
she can take the cheaper flight, she will save $200. What you will suggests her?
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Introduction

Let 𝛺 = {𝑎, 𝑏}, where 𝑏 means the exam will be scheduled before the last day, while 𝑎
means the exam will be after the last day. Then,

ℙ{𝑎} = 0.2, ℙ{𝑏} = 0.8.

Let 𝑋 be the random variable representing the money she will gain, then

𝑋 (𝑎) = −300, 𝑋 (𝑏) = 200.

51



Example

52



Definition

The expected value is one of the most important concepts in probability theory (and also in
statistics and data science).

Definition 27 (Expectation)
If 𝑋 is a discrete random variable having a support 𝕊 = {𝑠 𝑗, 𝑗 ∈ 𝐽} and a probability mass
function 𝑝(𝑥), then the expectation (also called the expected value or the mean) of 𝑋 ,
denoted by 𝔼[𝑋], is defined by

𝔼[𝑋] =
∑
𝑗∈𝐽

𝑠 𝑗𝑝(𝑠 𝑗) =
∑
𝑥∈𝕊

𝑥𝑝(𝑥),

provided that the summation exists, say,∑
𝑥∈𝕊

|𝑥 |𝑝(𝑥) < ∞.
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Definition

Notation
The expected value of 𝑋 is sometimes denoted by 𝜇𝑋 , or simply, 𝜇.
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Examples

Example 28 (Coin tossing)

Consider two independent coin tosses, each with a 3/4 probability of a head, and
let 𝑋 be the number of heads obtained. What is the mean of 𝑋?

Solution.
The pmf of 𝑋 is given by

ℙ{0} = 1
16

, ℙ{1} = 3
8
, ℙ{2} = 9

16
.

Then, the mean of 𝑋 is

𝔼[𝑋] = (0) (1/16) + (1) (3/8) + (2) (9/16) = 3
2
. ■
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Examples

Example 29

A school class of 120 students is driven in 3 buses to a symphonic performance.
There are 36 students in one of the buses, 40 in another, and 44 in the third bus.
When the buses arrive, one of the 120 students is randomly chosen. Let 𝑋 denote
the number of students on the bus of that randomly chosen student, and find 𝔼[𝑋].
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Solution.
Let 𝛺 = {1, 2, 3}, where 𝑖 represents that the selected student was on the bus 𝑖. Let ℱ

be the power set of 𝛺. Since the student is randomly chosen with equally likely chance, we
can define ℙ as

ℙ{1} = 36
120

, ℙ{2} = 40
120

, ℙ{3} = 44
120

.

Let 𝑋 : 𝛺 → ℝ be defined as 𝑋 (𝑖) is the number of student on the bus 𝑖, then 𝑋 is a
random variable from 𝛺 to ℝ, and

ℙ{𝑋 = 36} = ℙ{1} =
36
120

, ℙ{𝑋 = 40} = ℙ{2} =
40
120

, ℙ{𝑋 = 44} = ℙ{3} =
44
120

.

By definition,

𝔼[𝑋] = (36)
(

36
120

)
+ (40)

(
40
120

)
+ (44)

(
44
120

)
= 40.2667. ■
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Indicator function, probability and expectation

Example 30

We say that 1𝐴 is an indicator variable for the event 𝐴:

1𝐴 =

{
1 if 𝐴 occurs,

0 otherwise.

Find 𝔼[1𝐴].
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Whether the mean always exists?

The condition∑
𝑥∈𝕊 |𝑥 |𝑝(𝑥) < ∞ guarantees that∑𝑥∈𝕊 𝑥𝑝(𝑥) is well-defined, especially for the

case where 𝕊 is an infinite set.

Example 31 (A counterexample)

Assume that 𝑋 takes the value 2𝑘 with probability 2−𝑘, for 𝑘 = 1, 2, . . . . Then,

∞∑
𝑘=1

(2𝑘) (2−𝑘) =
∞∑
𝑘=1

1 = ∞.

In this case, the expectation is not well-defined.
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How to understand the mean?

■ It is useful to view the mean of 𝑋 as a “representative” value of 𝑋 , which lies somewhere
in the middle of its range.

■ The mean of 𝑋 is the center of gravity of the pmf.

Center of gravity 𝑐 = 𝔼[𝑋]
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Population mean and the expectation

Assume that we consider the height of all SUSTech students as a population. Suppose that
there are totally 𝑁 students at SUSTech, whose height are distinct numbers ℎ1, ℎ2, . . . , ℎ𝑁

(世界上没有两片相同的叶子). Let 𝐻 be the height of a randomly chosen student, in other
words, 𝐻 is a random variable taking values ℎ1, . . . ℎ𝑁 with equal probability 1/𝑁.
Then, the expectation of 𝐻 is

𝔼[𝐻] = 1
𝑁

𝑁∑
𝑖=1

ℎ𝑖,

which is exactly the population mean.
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Gambling and expectation

Example 32 (The wheel of fortune)

The following gambling game, known as
the wheel of fortune (or chuck-a-luck),
is quite popular at many carnivals and
gambling casinos: A player bets on one
of the numbers 1 through 6. Three dice
are then rolled, and if the number bet
by the player appears 𝑖 times, 𝑖 = 1, 2, 3,
then the player wins 𝑖 units; if the num-
ber bet by the player does not appear on
any of the dice, then the player loses 1
unit. Is this game fair to the player?
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Solution.
Let 𝑋 denote the amount of money that the player wins. Then,

ℙ(𝑋 = −1) =
(
5
6

)3
=

125
216

,

ℙ(𝑋 = 1) = (3)
(
1
6

) (
5
6

)
=

75
216

,

ℙ(𝑋 = 2) = (3)
(
1
6

)2 (5
6

)
=

15
216

,

ℙ(𝑋 = 3) =
(
1
6

)3
=

1
216

.

Thus, the expectation of 𝑋 is

𝔼[𝑋] = (−1)
(
125
216

)
+ (1)

(
75
216

)
+ (2)

(
15
216

)
+ (3)

(
1

216

)
= − 17

216
.

■
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Expectation and lottery

Example 33

Assume that a lottery ticket costs $10 dollors, and the distribution of prize is:

Prize Probability
$500,000 5

1,000,000
$10,000 95

1,000,000
$500 500

1,000,000
$100 1,000

1,000,000
$20 10,000

1,000,000
$0 *

Find the expectation of the prize.
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Solution.
Let 𝑋 denote the prize (in dollors) of a randomly chosen lottery. Then,

𝔼[𝑋] = 500, 000 · 5
1, 000, 000

+ 10, 000 · 95
1, 000, 000

+ 500 · 500
1, 000, 000

+ 100 · 1, 000
1, 000, 000

+ 20 · 10, 000
1, 000, 000

+ 0 · ℙ(𝑋 = 0)

=
2, 500, 000
1, 000, 000

+ 950, 000
1, 000, 000

+ 250, 000
1, 000, 000

+ 100, 000
1, 000, 000

+ 200, 000
1, 000, 000

+ 0

=
4, 000, 000
1, 000, 000

= 4

So, the expected prize is 4, which means on average, you can expect to win 4 units of the
prize amount in this scenario. ■
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Expectation and insurance

Example 34 (Insurance)

An insurance company offers a “death
and disability” policy that pays $10,000
when the costumer die or $5,000 if
he/she is permanently disabled. It
charges a premium of only $50 a year for
this benefit. Suppose that the death rate
in any year is 1 out of every 1000 peo-
ple, and that another 2 out of 1000 suf-
fer some kind of disability. Is the com-
pany likely to make a profit selling such
a plan?
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Expectation of a function of a random variable

■ If 𝑋 is a random variable and 𝑔 is a real-valued function, then 𝑔(𝑋) is also a random
variable.

■ How to define the expectation of 𝑔(𝑋)?

■ Idea: find the pmf of 𝑌 = 𝑔(𝑋), and find the expected value by ∑ 𝑦𝑝𝑌 (𝑦)?

Example 35

Let 𝑋 denote a random variable having the following distribution:

ℙ{𝑋 = −1} = 0.2, ℙ{𝑋 = 0} = 0.5, ℙ{𝑋 = 1} = 0.3.

Find the expectation of 𝑌 = 𝑋2.
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Solution.
The pmf of 𝑌 is given by

ℙ{𝑌 = 0} = ℙ{𝑋 = 0} = 0.5, ℙ{𝑌 = 1} = ℙ{𝑋 = −1} + ℙ{𝑋 = 1} = 0.5.

Hence,

𝔼[𝑌 ] = (0)(0.5) + (1)(0.5) = 0.5.

Can we calculate the expectation of 𝑋2 without the pmf of 𝑌?

Note that

𝔼[𝑋2] = 0.5 = (1) (0.2) + (0) (0.5) + (1) (0.3)
= (1) (ℙ{𝑋 = −1}) + (0) (ℙ{𝑋 = 0}) + (1)(ℙ{𝑋 = 1})
= ((−1)2) (ℙ{𝑋 = −1}) + (02) (ℙ{𝑋 = 0}) + (12) (ℙ{𝑋 = 1})
=
∑
𝑥∈𝕊

𝑥2𝑝(𝑥). ■
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Proposition 36

If 𝑋 is a discrete random variable with support 𝕊 and pmf 𝑝, then, for any real-valued
function 𝑔,

𝔼[𝑔(𝑋)] =
∑
𝑥∈𝕊

𝑔(𝑥)𝑝(𝑥).

Proof.
Let 𝑌 = 𝑔(𝑋). Note that

𝔼[𝑔(𝑋)] =
∑
𝑦

𝑦ℙ{𝑌 = 𝑦}

=
∑
𝑦

∑
𝑥:𝑔 (𝑥 )=𝑦

𝑦ℙ{𝑋 = 𝑥}

=
∑
𝑦

∑
𝑥:𝑔 (𝑥 )=𝑦

𝑔(𝑥) ℙ{𝑋 = 𝑥}

=
∑
𝑥

𝑔(𝑥) ℙ{𝑋 = 𝑥}. ■
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Another expression of the expected value

Proposition 37

Let (𝛺,ℱ,ℙ) be a probability space where 𝛺 = {𝜔1, 𝜔2, . . . } is at most countable, and
let 𝑋 be a discrete random variables defined on it. Then,

𝔼[𝑋] =
∑
𝜔∈𝛺

𝑋 (𝜔) ℙ({𝜔}).
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Example

Example 38

Number of coins.
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Example

Example 39 (Average score)

Assume that there are 10 students in a class, whose scores are listed in the following
table:

Student ID Score
1 6
2 7
3 8
4 9
5 6
6 7
7 8
8 9
9 6
10 7

Find the average score.
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Proof.
Let 𝕊 = {𝑥1, 𝑥2, . . . } be the support of 𝑋 , and let 𝐴𝑥 = {𝜔 : 𝑋 (𝜔) = 𝑥}. Then, it follows
that ⋃

𝑥∈𝕊
𝐴𝑥 = 𝛺, 𝐴𝑥 ∩ 𝐴𝑦 = ∅ for 𝑥 ≠ 𝑦.

By definition,

𝔼[𝑋] =
∑
𝑥∈𝕊

𝑥 ℙ(𝑋 = 𝑥)

=
∑
𝑥∈𝕊

𝑥 ℙ(𝐴𝑥)

=
∑
𝑥∈𝕊

𝑥 ℙ

{ ⋃
𝜔∈𝐴𝑥

{𝜔}
}

=
∑
𝑥∈𝕊

∑
𝜔∈𝐴𝑥

𝑥 ℙ({𝜔})

=
∑
𝑥∈𝕊

∑
𝜔∈𝐴𝑥

𝑋 (𝜔) ℙ({𝜔})

=
∑
𝜔∈𝛺

𝑋 (𝜔) ℙ({𝜔}). ■
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Monotone property of expectation

Proposition 40

Let 𝑋 be a discrete random variable with support 𝕊, and let 𝑓 , 𝑔 : 𝕊 → ℝ be functions
such that 𝑓 (𝑥) ⩽ 𝑔(𝑥) for all 𝑥 ∈ 𝕊. Then,

𝔼[ 𝑓 (𝑋)] ⩽ 𝔼[𝑔(𝑋)].
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Monotone property of expectation

Proposition 41

Let (𝛺,ℱ,ℙ) be a probability space, where 𝛺 is at most countablea, and let 𝑋 and 𝑌
be two discrete random variables defined on it. If 𝑋 (𝜔) ⩽ 𝑌 (𝜔) for all 𝜔 ∈ 𝛺, then

𝔼[𝑋] ⩽ 𝔼[𝑌 ].
aThis condition can be removed.
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Linearity combinations

Proposition 42

Assume that 𝑋 is a discrete random variable. For any 𝑎, 𝑏 ∈ ℝ and 𝑓 , 𝑔 : ℝ → ℝ,

𝔼[𝑎 𝑓 (𝑋) + 𝑏𝑔(𝑋)] = 𝑎𝔼[ 𝑓 (𝑋)] + 𝑏𝔼[𝑔(𝑋)].

Proof.
Assume that 𝑋 has support 𝕊 and pmf 𝑝. Then,

𝔼[𝑎 𝑓 (𝑋) + 𝑏𝑔(𝑋)] =
∑
𝑥∈𝕊

[𝑎 𝑓 (𝑥) + 𝑏𝑔(𝑥)]𝑝(𝑥)

=
∑
𝑥∈𝕊

𝑎 𝑓 (𝑥)𝑝(𝑥) +
∑
𝑥∈𝕊

𝑏𝑔(𝑥)𝑝(𝑥)

= 𝑎
∑
𝑥∈𝕊

𝑓 (𝑥)𝑝(𝑥) + 𝑏
∑
𝑥∈𝕊

𝑔(𝑥)𝑝(𝑥)

= 𝑎𝔼[ 𝑓 (𝑋)] + 𝑏𝔼[𝑔(𝑋)]. ■
76



Linearity property of expectation

Specially, if 𝑓 (𝑥) = 𝑥 and 𝑔(𝑥) = 1, we have the following proposition, which is a corollary of
the preceding proposition.

Proposition 43

For any discrete random variable 𝑋 and real numbers 𝑎 and 𝑏, we have

𝔼[𝑎𝑋 + 𝑏] = 𝑎𝔼[𝑋] + 𝑏.
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Linearity property of expectation

Proposition 44

Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be discrete random variables, then

𝔼

[ 𝑛∑
𝑖=1

𝑋𝑖

]
=

𝑛∑
𝑖=1

𝔼[𝑋𝑖].
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Example

Example 45 (Fair dice)

Find the expected value of the sum obtained when 𝑛 fair dice are rolled.
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Example

Example 46

For a random variable 𝑋, it is given that 𝔼[𝑋] = 2 and 𝔼[𝑋2] = 8. Calculate the
expected value of the following random variables:

𝑌 = (2𝑋 − 3)2, 𝑊 = 𝑋 (𝑋 − 1), 𝑍 = 𝑋2 + (𝑋 + 1)2.

Solution.
For 𝑌 ,

𝔼[𝑌 ] = 𝔼[4𝑋2 − 12𝑋 + 9] = 4𝔼[𝑋2] − 12𝔼[𝑋] + 9 = (4)(8) − (12) (2) + 9 = 17.

Similarly,

𝔼[𝑊] = 6, 𝔼[𝑍] = 21. ■
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𝔼[𝑔(𝑋)] and 𝑔(𝔼[𝑋])

■ If 𝑔(𝑥) = 𝑎𝑥 + 𝑏, then we have known that

𝔼[𝑔(𝑋)] = 𝔼[𝑎𝑋 + 𝑏] = 𝑎𝔼[𝑋] + 𝑏 = 𝑔(𝔼[𝑋]).

■ Whether 𝔼[𝑔(𝑋)] and 𝑔(𝔼[𝑋]) are always equal for general function 𝑔?

■ If 𝑋 has the following distribution:

𝑥 −1 0 1
𝑝(𝑥) 0.2 0.5 0.3 =⇒ 𝔼[𝑋] = 0.

■ For different choice of 𝑔:

𝑔(𝑥) 2𝑥 + 1 𝑥2 𝑥3 √
𝑥 + 1 𝑒𝑥 · · ·

𝔼[𝑔(𝑋)] 1 0.5 0 0.924 1.389 · · ·
𝑔(𝔼[𝑋]) 1 0 0 1 1 · · ·
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𝔼[𝑔(𝑋)] is larger if 𝑔 is convex

Definition 47 (Convex function)

A function 𝑓 : 𝕊 → ℝ is said to be a convex
function if for any 𝜆 ∈ (0, 1) and 𝑥, 𝑦 ∈ 𝕊,

𝑓 (𝜆𝑥 + (1 − 𝜆)𝑦) ⩽ 𝜆 𝑓 (𝑥) + (1 − 𝜆) 𝑓 (𝑦).

𝕊

ℝ

𝑓 (𝑥 )

𝑓 (𝑦)

𝑥 𝑦

𝑧 = 𝜆𝑥 + (1 − 𝜆 )𝑦

𝜆 𝑓 (𝑥 ) + (1 − 𝜆 ) 𝑓 (𝑦)

𝑓 (𝑧)
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Theorem 48 (Jensen’s inequality)

Let 𝑋 be a random variable, then for any convex function 𝑔,

𝔼[𝑔(𝑋)] ⩾ 𝑔(𝔼[𝑋]).

𝑥

𝑦
𝑔(𝑥)

𝑙(𝑥) = 𝑎𝑥 + 𝑏

(𝜇, 𝑔(𝜇))

83



Proof.
Let 𝕊 be the support of 𝑋 . Let 𝜇 = 𝔼[𝑋]
and let 𝑙(𝑥) = 𝑎𝑥 + 𝑏 be a linear function
that has 𝑙(𝜇) = 𝑔(𝜇) and 𝑔(𝑥) ⩾ 𝑙(𝑥) for
all 𝑥 ∈ 𝕊. To see that such a function ex-
ists, recall that the convexity implies, for any
𝑥, 𝑥 + ℎ, 𝑥 − ℎ ∈ 𝕊, we have:

𝑔(𝑥) ⩽ 1
2
(𝑔(𝑥 − ℎ) + 𝑔(𝑥 + ℎ)),

which further implies that

lim
ℎ↓0

𝑔(𝜇) − 𝑔(𝜇 − ℎ)
ℎ

⩽ lim
ℎ↓0

𝑔(𝜇 + ℎ) − 𝑔(𝜇)
ℎ

.

Let 𝑎 be any number between these two lim-
its, 𝑏 = 𝑔(𝜇) − 𝑎𝜇, and let

𝑙(𝑥) = 𝑎(𝑥 − 𝜇) + 𝑔(𝜇) = 𝑎𝑥 + 𝑏,

then 𝑙(𝑥) satisfies the condition.
Therefore,

𝔼[𝑔(𝑋)] ⩾ 𝔼[𝑙(𝑋)] = 𝔼[𝑎𝑋 + 𝑏]
= 𝑎𝜇 + 𝑏 = 𝑔(𝜇),

as desired. ■
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Examples

Example 49 (Application of Jensen’s inequality)

Let 𝑋 be a discrete random variable. Here are some commonly used convex func-
tions:
■ 𝑔(𝑥) = |𝑥 |: 𝔼[|𝑋 |] ⩾ |𝔼[𝑋] |.

■ 𝑔(𝑥) = 𝑥2: 𝔼[𝑋2] ⩾ (𝔼[𝑋])2.

■ 𝑔(𝑥) = |𝑥 |𝑝 for 𝑝 ⩾ 1: 𝔼[|𝑋 |𝑝] ⩾ |𝔼[𝑋] |𝑝.

■ 𝑔(𝑥) = max{𝑥, 𝑎} for any 𝑎 ∈ ℝ: 𝔼[max{𝑋, 𝑎}] ⩾ max{𝔼[𝑋], 𝑎}.

■ 𝑔(𝑥) = 𝑒𝜆𝑥 for all 𝜆 ∈ ℝ: 𝔼[𝑒𝜆𝑋 ] ⩾ 𝑒𝜆 𝔼[𝑋 ].
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𝑘th moment and moment generating function

Definition 50
Let 𝑘 be an non-negative integer. The 𝑘th moment of 𝑋 is defined as 𝔼[𝑋𝑘], while the 𝑘th
absolute moment of 𝑋 is defined as 𝔼[|𝑋 |𝑘].

Definition 51
The moment generating function 𝑀 : ℝ → ℝ of 𝑋 is defined by

𝑀 (𝑡) = 𝔼[𝑒𝑡𝑋 ] for 𝑡 ∈ ℝ.
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Variance
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Introduction

1 2 3 4 5 6 7 8

𝔼[𝑋]

■ Imagine that the pmf is an ideal histogram.

■ The expectation represents the center of the distribution (the red bar).

■ The blue arrow represents the spread of the distribution: How to measure it?
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Definition

■ We expect that 𝑋 take on values around 𝜇 = 𝔼[𝑋], it is reasonable to measure the
variation of 𝑋 by the distance between 𝑋 and 𝜇, on the average.

■ Here gives the definition.

Definition 52 (Variance)
The variance of 𝑋 , denoted by Var(𝑋), is defined by

Var(𝑋) = 𝔼[(𝑋 − 𝜇)2].
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Examples

Example 53

Calculate Var(𝑋) if 𝑋 represents the outcome when a fair die is rolled.

Solution.
It can be shown that 𝜇 = 𝔼[𝑋] = 7

2 . Also,

Var(𝑋) =
6∑
𝑖=1

(𝑖 − 7
2
)2 · 1

6

=
35
12

. ■
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An alternative definition

An alternative formula for Var(𝑋) is given by

Var(𝑋) = 𝔼[𝑋2] − (𝔼[𝑋])2.
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An alternative definition

Proof.

Var(𝑋) = 𝔼[(𝑋 − 𝜇)2]
=
∑
𝑥∈𝕊

(𝑥 − 𝜇)2𝑝(𝑥)

=
∑
𝑥∈𝕊

(𝑥2 − 2𝜇𝑥 + 𝜇2)𝑝(𝑥)

=
∑
𝑥∈𝕊

𝑥2𝑝(𝑥) − 2𝜇
∑
𝑥∈𝕊

𝑥𝑝(𝑥) + 𝜇2 ∑
𝑥∈𝕊

𝑝(𝑥)

= 𝔼[𝑋2] − 2𝜇2 + 𝜇2

= 𝔼[𝑋2] − 𝜇2. ■

In words, the variance of 𝑋 is equal to the expected value of 𝑋2 minus the square of its expected
value.
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An alternative definition

Example 54

In the last example, we have

𝔼[𝑋2] =
6∑
𝑖=1

𝑖2 · 1
6
=

91
6
,

and therefore,

Var(𝑋) = 𝔼[𝑋2] − (𝔼[𝑋])2 =
91
6

−
(
7
2

)2
=

35
12

.
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Properties of variance

Proposition 55

For any constants 𝑎 and 𝑏,

Var(𝑎𝑋 + 𝑏) = 𝑎2 Var(𝑋).

Proof.
Let 𝜇 = 𝔼[𝑋]. The expected value of 𝑎𝑋 + 𝑏 is 𝑎𝜇 + 𝑏. Therefore,

Var(𝑎𝑋 + 𝑏) = 𝔼[(𝑎𝑋 + 𝑏 − (𝑎𝜇 + 𝑏))2]
= 𝔼[𝑎2(𝑋 − 𝜇)2]
= 𝑎2 𝔼[(𝑋 − 𝜇)2]
= 𝑎2 Var(𝑋). ■
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Loss function: connecting variance and expectation

Example 56 (Where to build the station)

In an old village people have built houses along a straight road. The travel expense
is proportional to the square of the distance. Now, people wanted to build a station.
Can you give a suggestion whether to build the station?

The road𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8𝑠

The square loss function
The square loss function is defined as

ℓ(𝑠) = (𝑥 − 𝑠)2.
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Loss function: connecting variance and expectation

Assume that the locations of the houses are randomly distributed. If the station is located
at 𝑠, then the expected value of the loss is

𝐿(𝑠) = 𝔼[(𝑋 − 𝑠)2].

Proposition 57

Let 𝜇 = 𝔼[𝑋]. We have

𝜇 = arg min
𝑠

𝐿(𝑠)

and

𝐿(𝜇) = Var(𝑋).
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Variance, square of units

The variance will play an important role in statistics, but it has a problem as a measure of
spread. Whatever the units of the original data are, the variance is in squared units. We
want measures of spread to have the same units as the data.
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Standard deviation

Definition 58
The standard deviation of 𝑋 is defined by

SD(𝑋) =
√

Var(𝑋).
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Mean absolute deviation

Definition 59
The mean absolute deviation is defined as

MAD(𝑋) = 𝔼[|𝑋 − 𝜇 |].
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Relation between SD and MAD

Proposition 60

We have

MAD(𝑋) ⩽ SD(𝑋).
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Examples

Example 61 (Revisit Example 53)

Find the SD and MAD of 𝑋 in Example 53.

Solution.
We have

SD(𝑋) =
√

Var(𝑋) =
√

35
12

≈ 1.708.

The MAD is

MAD(𝑋) = |1 − 3.5| · 1
6
+ · · · + |6 − 3.5| · 1

6
= 1.5.

■
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Median

102



Introduction

Example 62 (Median of a sample)

The median of a finite list of numbers is the ”middle” number, when those numbers
are listed in order from smallest to greatest. For example, f the data set has an odd
number of observations, the middle one is selected. For example, the following list
of seven numbers,

1, 3, 3, 6, 7, 8, 9

has the median of 6, which is the fourth value.
If the data set has an even number of observations, there is no distinct middle
value and the median is usually defined to be the arithmetic mean of the two middle
values.[1][2] For example, this data set of 8 numbers

1, 2, 3, 4, 5, 6, 8, 9

has a median value of 4.5, that is, (4 + 5)/2.
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Example 63 (“Bad” datasets)

■ People usually understand the mean as the center of a dataset or a distribution.
However, when a dataset, or a distribution is skewed, or extreme values are
not known, or outliers are untrustworthy (maybe measurement errors), then
the median is more credible than the mean.

■ Median income, for example, may be a better way to describe center of the
income distribution because increases in the largest incomes alone have no
effect on median.

■ For this reason, the median is of central importance in robust statistics.
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Expected value may not exist

Example 64

Consider a discrete random variable 𝑋 has the following probability mass function:

𝑝(𝑖) =
{

2 − 𝜋2

6 𝑖 = 0,
1

(1+𝑖)2 𝑖 = 1, 2, . . . .

𝑖

𝑝(𝑖)
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Median: definition

Definition 65 (Median)
For any random variable 𝑋 with distribution function 𝐹, the median of 𝑋 , denoted by
med(𝑋), is defined as any real number 𝑚 that satisfies the conditions

𝐹(𝑚) ⩾ 1
2
, 𝐹(𝑚−) ⩽ 1

2
.
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Examples

Example 66

If 𝑋 has the following pmf:

𝑝(0) = 1
4
, 𝑝(1) = 1

2
, 𝑝(2) = 1

4
.

Find the median of 𝑋.
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Examples

Example 67

Let 𝑋 be the result in an experiment of tossing a fair die. Find the median of 𝑋.
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Solution.
Note that for any 3 < 𝑥 < 4, we have

𝐹(𝑥) = 𝐹(𝑥−) = 1
2
.

Moreover,

𝐹(3) = 1
2
, 𝐹(3−) = 1

3
⩽

1
2
,

and

𝐹(4) = 2
3
⩾

1
2
, 𝐹(4−) = 1

2
.

Therefore, any 𝑥 ∈ [3, 4] is a median of 𝑋 .

𝑥

𝐹(𝑥)

1 2 3 4 5 6

1/2

■
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Example

Example 68 (Revisit Example 64)

Find the median of 𝑋 in Example 64.
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𝑥

𝐹(𝑥)

1/2

1
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Commonly used discrete distributions
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Bernoulli trials and Bernoulli distribution

■ Suppose that a trial whose outcome can
be classified as either a success or a
failure is performed.

■ Let 𝑋 = 1 when the outcome is a
success and 𝑋 = 0 when it is a failure.

■ Let 𝑝, 0 ⩽ 𝑝 ⩽ 1, is the probability that
the trial is a success.

■ Then, the probability distribution of 𝑋 is
given by

𝑥 0 1
𝑝(𝑥) 1 − 𝑝 𝑝

Figure: Jacob Bernoulli (伯努利)

113



Bernoulli trials and Bernoulli distribution

Definition 69 (Bernoulli random variable)
A random variable 𝑋 is said to follow a Bernoulli distribution with parameter 𝑝 if its proba-
bility distribution is given by the above table, denoted by

𝑋 ∼ Bernoulli(𝑝).

Proposition 70

If 𝑋 ∼ Bernoulli(𝑝), then

𝔼[𝑋] = 𝑝, Var(𝑋) = 𝑝(1 − 𝑝).
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Proof.
The expectation is

𝔼[𝑋] = (1)(𝑝(1)) + (0)(𝑝(0)) = (1) (𝑝) + (0)(1 − 𝑝) = 𝑝.

Similarly,

𝔼[𝑋2] = (12) (𝑝) + (02)(1 − 𝑝) = 𝑝,

and thus

Var(𝑋) = 𝔼[𝑋2] − (𝔼[𝑋])2 = 𝑝 − 𝑝2 = 𝑝(1 − 𝑝). ■

Remark
When 𝑝 = 1/2, then the variance is maximized.
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Binomial random variable

■ Suppose now that 𝑛 independent trials, each of which results in a success with
probability 𝑝 and in a failure with probability 1 − 𝑝, are to be performed.

Definition 71 (Binomial distribution)
If 𝑋 represents the number of successes that occur in the 𝑛 trials, then 𝑋 is said to be
a binomial random variable with parameters (𝑛, 𝑝), denoted by 𝑋 ∼ Binomial(𝑛, 𝑝) (or
Bin(𝑛, 𝑝), B(𝑛, 𝑝) in other textbooks).

Remark
Specially, if 𝑛 = 1, then

Binomial(1, 𝑝) 𝑑
= Bernoulli(𝑝).
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R codes

■ Using R, we can generate Binomial random variables as follows:
rbinom(n=1,size=10,prob=0.3) # size is number of trials, n is number of

random numbers
[1] 5
rbinom(n=100,size=10,prob=0.3)

[1] 3 4 1 3 3 3 2 2 4 5 3 3 5 3 1 1 2 4 1 4 1 2 7 3 2 5 3 3 3
[30] 3 3 3 2 3 4 5 4 2 6 1 2 3 4 5 3 2 3 3 3 3 1 2 4 2 4 3 4 1
[59] 2 2 6 0 3 3 2 5 3 4 1 5 2 2 3 3 2 3 3 2 3 3 1 2 3 1 2 3 1
[88] 4 2 1 1 2 3 2 0 5 3 5 3 4
x <- rbinom(n=1000,size=10,prob=0.3)
data <- data.frame(x=x)
ggplot(data,aes(x=x,y=after_stat(density))) +

geom_histogram(binwidth=1,fill="orange2",color="black") +
scale_x_continuous(breaks=0:10)
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R codes

0.0

0.1

0.2

0 1 2 3 4 5 6 7 8
x

de
ns

ity

■ What is the theoretical probability

ℙ{𝑋 = 𝑘} =?

118



pmf of Binomial(𝑛, 𝑝)

Proposition 72

The pmf of a binomial random variable 𝑋 ∼ Binomial(𝑛, 𝑝) is given by

𝑝(𝑘) =
(
𝑛

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘 for 𝑘 = 0, 1, . . . , 𝑛.

Remark
Here,

(𝑛
𝑘

)
is the number of combinations, 𝑝𝑘 is the probability of getting 𝑘 successes, and

(1 − 𝑝)𝑛−𝑘 is the probability of getting 𝑛 − 𝑘 failures.
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Examples

Example 73 (Coins)

Five fair coins are flipped. If the outcome are assumed independent, find the prob-
ability mass function of the number of heads obtained.

Solution.
Let 𝑋 be the random variable representing the number of heads that appear in these five
trials. Then, 𝑋 ∼ Binomial(5, 1

2 ). Hence, by the pmf formula of the binomial distribution,

𝑝(0) =
(
5
0

) (
1
2

)0 (1
2

)5
=

1
32

≈ 0.03125, . . .

The probability distribution is given by
𝑥 0 1 2 3 4 5

𝑝(𝑥) 1
32

5
32

10
32

10
32

5
32

1
32
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R codes

■ We can use R to compute the probability mass function:
k <- 0:5 # all possible values
dbinom(k, size=5, prob=0.5)
[1] 0.03125 0.15625 0.31250 0.31250 0.15625 0.03125

■ We can draw the pmf plot as follows:
k <- 0:5
pmf <- dbinom(k, size=5, prob=0.5)
binom_data <- data.frame(x=k,y=pmf)
ggplot(data=binom_data) +

geom_bar(aes(x=x,y=y), stat="identity", fill="orange2") +
scale_x_continuous(breaks=0:5)
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R codes

0.0

0.1

0.2

0.3

0 1 2 3 4 5
x

y
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Examples

Example 74 (Screw products)

It is known that screws produced by a certain company will be defective with prob-
ability .01, independently of each other. The company sells the screws in packages
of 10 and offers a money-back guarantee that at most 1 of the 10 screws is defec-
tive. What proportion of packages sold must the company replace?

Solution.
If 𝑋 is the number of defective screws in a package, then 𝑋 ∼ Binomial(10, 0.01). Hence,
the probability that a package will have to be replaced is

ℙ{𝑋 ⩾ 2} = 1 − ℙ{𝑋 = 0} − ℙ{𝑋 = 1}

= 1 −
(
10
0

)
(0.01)0(0.99)10 −

(
10
1

)
(0.01)1(0.99)9

≈ 0.004. ■
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R codes

■ We can calculate ℙ{𝑋 ⩽ 𝑘} using pbinom(k, size=n,prob=p): so ℙ{𝑋 ⩽ 1} is
pbinom(1, size=10, prob=0.01)
[1] 0.9957338

■ Therefore, the desired probability is
1 - pbinom(1, size=10, prob=0.01)
[1] 0.0042662

■ Alternatively, we can use the following code to compute ℙ{𝑋 > 1}:
pbinom(1, size=10, prob=0.01, lower=FALSE)
[1] 0.0042662
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Properties of Binomial distribution

Proposition 75

If 𝑋 ∼ Binomial(𝑛, 𝑝), then

𝔼[𝑋] = 𝑛𝑝, Var(𝑋) = 𝑛𝑝(1 − 𝑝).
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Proof.
By definition,

𝔼[𝑋] =
𝑛∑

𝑘=0
𝑘 · 𝑛!

𝑘!(𝑛 − 𝑘)! 𝑝
𝑘 (1 − 𝑝)𝑛−𝑘

= 0 +
𝑛∑

𝑘=1
𝑘 · 𝑛!

𝑘!(𝑛 − 𝑘)! 𝑝
𝑘 (1 − 𝑝)𝑛−𝑘

=
𝑛∑

𝑘=1

𝑛 · (𝑛 − 1)!
(𝑘 − 1)!(𝑛 − 𝑘)! 𝑝 · 𝑝

𝑘−1(1 − 𝑝) (𝑛−1)−(𝑘−1)

= 𝑛𝑝
𝑚∑
ℓ=0

𝑚!
ℓ!(𝑚 − ℓ)! 𝑝

ℓ (1 − 𝑝)𝑚−ℓ︸                              ︷︷                              ︸
=(𝑝+(1−𝑝) )𝑚=1

(ℓ = 𝑘 − 1 and 𝑚 = 𝑛 − 1)

= 𝑛𝑝. ■
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Properties of Binomial distribution

Proposition 76

If 𝑋 ∼ Binomial(𝑛, 𝑝), where 0 < 𝑝 < 1, then as 𝑘 goes from 0 to 𝑛, 𝑝(𝑘) first
increases monotonically and then decreases monotonically, reaching its largest value
when 𝑘 = ⌊(𝑛 + 1)𝑝⌋, the largest integer that is less than or equal to (𝑛 + 1)𝑝.

0.0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6 7 8 9 10
x

y1

0.1

0.0

0.1

0.2

0 1 2 3 4 5 6 7 8 9 10
x

y2

0.2

0.00

0.05

0.10

0.15

0.20

0.25

0 1 2 3 4 5 6 7 8 9 10
x

y3

0.5

0.0

0.1

0.2

0.3

0 1 2 3 4 5 6 7 8 9 10
x

y4

0.8

Figure: Binomial pmfs for 𝑛 = 10 and 𝑝 = 0.1, 0.3, 0.5 and 0.8, respectively
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Proof.
Consider the ratio

ℙ{𝑋 = 𝑘}
ℙ{𝑋 = 𝑘 − 1} =

(𝑛 − 𝑘 + 1)𝑝
𝑘(1 − 𝑝) .

Hence, ℙ{𝑋 = 𝑘} ⩾ ℙ{𝑋 = 𝑘 − 1} if and only if (𝑛 − 𝑘 + 1)𝑝 ⩾ 𝑘(1 − 𝑝), which is equivalent
to

𝑘 ⩽ (𝑛 + 1)𝑝. ■
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Geometric distribution

Suppose that independent trials, each having a probability 𝑝, 0 < 𝑝 < 1, of being a success,
are performed until a success occurs.

Definition 77 (Geometric distribution)
Let 𝑋 equal the number of trials required to get a success, then 𝑋 is said to have a Geo-
metric distribution with parameter 𝑝, denoted by 𝑋 ∼ Geometric(𝑝).

F F F F F F F F S. . .

all failures success!

Proposition 78

The pmf 𝑝 of a Geometric random variable is given by

𝑝(𝑘) = (1 − 𝑝)𝑘−1𝑝 𝑘 = 1, 2, . . .
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An alternative form of geometric distribution

In probability theory and statistics, the geometric distribution is either one of two discrete
probability distributions:
■ The probability distribution of the number 𝑋 of Bernoulli trials needed to get one

success, supported on the set {1, 2, . . . }.

■ The probability distribution of the number 𝑌 = 𝑋 − 1 of failures before the first success,
supported on the set {0, 1, 2, . . .}.

■ For the second definition, the pmf of 𝑌 is
𝑝(𝑘) = (1 − 𝑝)𝑘𝑝 𝑘 = 0, 1, 2, . . .

Remark
These two different geometric distributions should not be confused with each other. Often,
the name shifted geometric distribution is adopted for the former one (distribution of the
number 𝑋); however, to avoid ambiguity, it is considered wise to indicate which is intended,
by mentioning the support explicitly.
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R codes

■ To generate Geometric random variables, we use rgeom() function:
rgeom(100, prob=0.3)

[1] 0 1 0 6 0 0 12 0 0 0 2 0 4 3 4 5 1 0 0
[20] 3 3 0 0 0 4 6 3 0 0 1 2 1 0 3 1 1 8 4
[39] 2 2 0 1 6 0 1 0 3 4 1 2 2 1 6 1 0 0 8
[58] 1 0 1 6 1 11 1 5 5 0 1 3 0 0 1 0 0 0 4
[77] 2 2 0 1 6 3 4 1 4 1 13 0 1 0 2 2 5 1 0
[96] 2 1 2 1 0

0.0

0.1

0.2

0.3

0 5 10 15 20
x

de
ns

ity
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R codes

■ To calculate the pmf of Geometric(𝑝), use dgeom():
dgeom(0:10, prop=0.3)

[1] 0.300000000 0.210000000 0.147000000 0.102900000 0.072030000
[6] 0.050421000 0.035294700 0.024706290 0.017294403 0.012106082

[11] 0.008474257

𝑥

𝑝(𝑥)

0

𝑝(0)

1

𝑝(1)

2

𝑝(2)

3

𝑝(3)

4

𝑝(4)

5

𝑝(5)

6

𝑝(6)

7

𝑝(7)

8

𝑝(8)

9

𝑝(9)

10

𝑝(10)
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Examples

Example 79

An urn contains 𝑁 white and 𝑀 black balls. Balls are randomly selected, one at a
time, until a black one is obtained. If we assume that each ball selected is replaced
before the next one is drawn, what is the probability that
(a) exactly 𝑛 draws are needed?

(b) at least 𝑘 draws are needed?
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Solution.
If we let 𝑋 denote the number of draws needed to select a black ball, then 𝑋 ∼
Geometric( 𝑀

𝑀+𝑁 ). Hence,
(a)

ℙ{𝑋 = 𝑛} =
(

𝑁

𝑀 + 𝑁

)𝑛−1 ( 𝑀

𝑀 + 𝑁

)
=

𝑀𝑁𝑛−1

(𝑀 + 𝑁)𝑛 .

(b)

ℙ{𝑋 ⩾ 𝑘} = 𝑀

𝑀 + 𝑁

∞∑
𝑛=𝑘

(
𝑁

𝑀 + 𝑁

)𝑛−1

=

(
𝑁

𝑀 + 𝑁

)𝑘−1
. ■
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Distribution function of Geometric distribution

Proposition 80

For a geometric random variable 𝑋 ∼ Geometric(𝑝) supported on {1, 2, . . . },

ℙ{𝑋 ⩾ 𝑘} = (1 − 𝑝)𝑘−1, 𝑘 = 1, 2, . . .

Proof.
As ℙ{𝑋 = 𝑘} = (1 − 𝑝)𝑘−1𝑝, it follows that

ℙ{𝑋 ⩾ 𝑘} =
∞∑
𝑛=𝑘

(1 − 𝑝)𝑛−1𝑝 = (1 − 𝑝)𝑘−1. ■
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Expected value and variance

Proposition 81

Let 𝑋 ∼ Geometric(𝑝) supported on {1, 2, . . . }. We have
(a) 𝔼[𝑋] = 1

𝑝 .

(b) Var(𝑋) = 1−𝑝
𝑝2 .
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Proof.
We have

𝔼[𝑋] =
∞∑
𝑘=1

𝑘𝑝(𝑘) = 𝑝
∞∑
𝑘=1

𝑘(1 − 𝑝)𝑘−1 = 𝑝 + 2𝑝(1 − 𝑝) + 3𝑝(1 − 𝑝)2 + . . .

(1 − 𝑝) 𝔼[𝑋] = 𝑝(1 − 𝑝) + 2𝑝(1 − 𝑝)2 + . . .

Taking the difference on both sides yields

𝑝𝔼[𝑋] = 𝑝 + 𝑝(1 − 𝑝) + 𝑝(1 − 𝑝)2 + · · · = 1 =⇒ 𝔼[𝑋] = 1
𝑝
.
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To compute the variance, it suffices to prove that 𝔼[𝑋2] = 2
𝑝2 − 1

𝑝 :

𝔼[𝑋2] =
∞∑
𝑘=1

𝑘2𝑝(1 − 𝑝)𝑘−1 = 𝑝 + 4𝑝(1 − 𝑝) + 9𝑝(1 − 𝑝)2 + . . .

(1 − 𝑝) 𝔼[𝑋2] = 𝑝(1 − 𝑝) + 4𝑝(1 − 𝑝)2 + . . .

which gives

𝑝𝔼[𝑋2] =
∞∑
𝑘=1

(2𝑘 − 1)𝑝(1 − 𝑝)𝑘−1 = 2 · 1
𝑝
− 1 =⇒ 𝔼[𝑋2] = 2

𝑝2 − 1
𝑝
. ■
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Memoryless property of Geometric distribution

Proposition 82

The geometric distribution has the memoryless (forgetfulness) property, that is, for
any nonnegative integers 𝑠 and 𝑡,

ℙ{𝑋 > 𝑠 + 𝑡 |𝑋 > 𝑠} = ℙ{𝑋 > 𝑡}.

Proof.
Note that

ℙ{𝑋 > 𝑠 + 𝑡 |𝑋 > 𝑠} = ℙ{𝑋 > 𝑠 + 𝑡}
ℙ{𝑋 > 𝑠} =

(1 − 𝑝)𝑠+𝑡
(1 − 𝑝)𝑠

= (1 − 𝑝)𝑡 = ℙ{𝑋 > 𝑡}. ■
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Poisson distribution

Definition 83 (Poisson distribution)

A random variable 𝑋 that takes values on
one of the values 0, 1, 2, . . . is said to be a
Poisson random variable with parameter 𝜆,
0 < 𝜆 < ∞, if it has the pmf

𝑝(𝑘) = 𝑒−𝜆 𝜆
𝑘

𝑘!
for 𝑘 = 0, 1, 2, . . .

denoted by 𝑋 ∼ Poisson(𝜆).

The Poisson probability distribution was in-
troduced by Siméon Denis Poisson in a
book published in 1837.
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Examples of Poisson distribution

Some examples of random variables that generally obey the Poisson probability distribution
are as follows:
■ The number of misprints on a page of a book.

■ The number of people in a community who survive to age 100.

■ The number of wrong telephone numbers that are dialed in a day.

■ The number of packages of dog biscuits sold in a particular store each day.

■ The number of customers entering a bank on a given day.

■ The number of earthquakes all over the world in one month.
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R codes

■ To generate Poisson random variables, use rpois() function:
rpois(100, lambda=3)

[1] 2 6 4 1 4 1 5 2 1 0 2 2 1 3 5 1 4 2 4 3 3 1 1 4 1 3 2 4 4
[30] 3 4 5 7 2 2 1 2 1 0 1 0 2 4 3 2 4 2 1 4 6 2 4 2 3 1 2 2 2
[59] 1 5 3 1 0 4 2 2 3 2 2 3 0 3 6 0 2 1 1 4 2 5 4 1 3 2 4 2 2
[88] 4 1 5 1 5 3 4 5 2 1 1 3 2

■ To draw the histogram:
poisson_data <- data.frame(x=rpois(1000, lambda=3))
ggplot(poisson_data, aes(x=x,y=after_stat(density))) +

geom_histogram(binwidth=1,fill="orange2",color="black") +
scale_x_continuous(breaks=0:10)
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R codes
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Figure: A histogram for the Poisson distribution with 𝜆 = 3
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Poisson in history

Poisson in History
In his book Gravity’s Rainbow, Thomas Pyn-
chon describes using the Poisson to model
the bombs dropping over London during
World War II.
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Examples

Example 84

Suppose that the number of typographical errors on a single page of a book has a
Poisson distribution with parameter 𝜆 = 0.5. Calculate the probability that there is
at least one error on this page.

Solution.
Let 𝑋 denote the number of errors on this page. Then, 𝑋 ∼ Poisson(0.5). We have the
desired probability is

ℙ{𝑋 ⩾ 1} = ℙ{𝑋 > 0} = 1 − ℙ{𝑋 = 0} = 1 − 𝑒−0.5 ≈ 0.393. ■
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R codes

■ If 𝑋 ∼ Poisson(0.5).

■ To calculate pmf, use dpois() function: for example, ℙ{𝑋 = 0} equals
dpois(0, lambda=0.5)
[1] 0.6065307

■ To calculate the cdf, use ppois() function: for example ℙ{𝑋 ⩽ 2} equals
ppois(2, lambda=0.5)
[1] 0.9856123

■ To calculate the upper probability, e.g., ℙ{𝑋 > 0} equals
ppois(0, lambda=0.5, lower=FALSE)
[1] 0.3934693
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R codes

■ The true pmf can be shown as follows:

𝑘

𝑝(𝑘)

0 1 2 3 4 5 6 7 8 9 10 11

Figure: True pmf of Poisson distribution with 𝜆 = 2.5
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Expected value and variance

Proposition 85

If 𝑋 ∼ Poisson(𝜆), then

𝔼[𝑋] = 𝜆, Var(𝑋) = 𝜆.

The parameter 𝜆 is also called the intensity (强度) of the Poisson distribution.
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Proof.

𝔼[𝑋] =
∞∑
𝑘=0

𝑘 · 𝜆
𝑘𝑒−𝜆

𝑘!

= 𝜆
∞∑
𝑘=1

𝜆𝑘−1𝑒−𝜆

(𝑘 − 1)!
= 𝜆,

and similarly,

𝔼[𝑋2] = 𝜆 (𝜆 + 1).

These results prove the proposition. ■
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Binomial & Poisson distributions

■ Consider Bernoulli trials with rare events: 𝑝 is quite small and 𝑛 is very large.

■ Example: In the early 1990s, a leukemia (白血病) cluster was identified at Woburn (沃
本), a small town in the US, whose population was about 𝑛 = 35, 000.

■ From the survey, in the United States in the early 1990s, there were about 30,800 new
cases of leukemia each year and about 280,000, 000 people, giving a value for 𝑝 of
about 0.00011.

■ Let 𝑋 denote the number of more cases in Woburn in the following year. Then,
𝑋 ∼ Binom(𝑛, 𝑝).

■ What is the mean of 𝑋?

■ How to calculate ℙ{𝑋 ⩾ 7}?
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Binomial & Poisson distributions

■ In fact, let 𝜆 = 𝑛𝑝,

ℙ{𝑋 = 𝑘} =
(
𝑛

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘

=
𝑛!

𝑘!(𝑛 − 𝑘)!

(
𝜆

𝑛

)𝑘 (
1 − 𝜆

𝑛

)𝑛−𝑘
=

(𝑛)𝑘
𝑛𝑘

𝜆𝑘

𝑘!
(1 − 𝜆/𝑛)𝑛
(1 − 𝜆/𝑛)𝑘

.

For large 𝑛 and moderate 𝜆,(
1 − 𝜆

𝑛

)𝑛
≈ 𝑒−𝜆 ,

(𝑛)𝑘
𝑛𝑘

≈ 1,
(
1 − 𝜆

𝑛

)𝑘
≈ 1.

Therefore,

ℙ{𝑋 = 𝑘} ≈ 𝑒−𝜆 𝜆
𝑘

𝑘!
.
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A comparison between the histograms
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Examples

Example 86

Suppose that the probability that an item produced by a certain machine will be
defective is 0.1. Find the probability that a sample a 10 items will contain at most
1 defective item.

Solution.
Let 𝑋 denote the number of defective items. Then, 𝑋 follows a Binomial distribution with
parameters (10, 0.1). Therefore,

ℙ{𝑋 ⩽ 1} = ℙ{𝑋 = 0} + ℙ{𝑋 = 1}

=

(
10
0

)
(0.1)0(0.9)10 +

(
10
1

)
(0.1)1(0.1)9 = 0.7361.

Using the Poisson approximation, 𝜆 = 𝑛𝑝 = 1, and thus

ℙ{𝑋 ⩽ 1} ≈ 𝑒−1 10

0!
+ 𝑒−1 11

1!
= 2𝑒−1 ≈ 0.7358. ■153



Examples

Example 87

Suppose that earthquakes occur in the western portion of the United States at a
rate of 3 per week. Find the probability that at least 3 earth quakes occur during
the next 2 weeks.

Solution.
Note that the rate of earthquakes is 3 per week, so the mean of numbers of earthquake
occurring in 2 weeks is 𝜆 = 3 × 2 = 6. Let 𝑋 denote the number of earthquakes during the
next 2 weeks, then it follows that 𝑋 ∼ Poisson(6). Therefore,

ℙ{𝑋 ⩾ 3} = 1 − ℙ{𝑋 = 0} − ℙ{𝑋 = 1} − ℙ{𝑋 = 2}

= 1 − 𝑒−6 − 6
1!
𝑒−6 − 62

2!
𝑒−6

= 1 − 24𝑒−6. ■
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Further reading

[1] Sheldon M. Ross (谢尔登·M.罗斯).

A first course in probability (概率论基础教程): Chapter 4.

10th edition (原书第十版),机械工业出版社
[2] Sheldon M. Ross (谢尔登·M.罗斯).

Introduction to Probability Models (概率模型导论): Chapter 2.

12th edition (原书第十二版),人民邮电出版社
[3] 李贤平.

概率论基础: Chapters 3 and 4.

第三版,高等教育出版社
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