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Monotone property



Unions and intersections &AMk

sssssssssssssssssssssssssssssssssssssssss

Let 7 be a finite or countable index set. Let {A;, j € 7} be a family of sets.

) Aj={x:x€A,forsomeje 7},
jes
(1Aj={x:xeAforallje 7}
jes
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Example CAEFE T

Example 1

Consider the following collection of sets indexed by N:
1 1 1
Al = (O, 1)7 A2 = (07 5)5 A3 = (07 5): DO ,An = (0, _)7 o e
n

Show that
(i) Url, An=(0,1);

(i) Ny An = @.



Solution.

(i) Let x € U, Ap, then x € A, = (0, %) for some n > 1, which further implies that
x € (0,1). This shows that

JAn c (0,1).
n=1
For the other side,
(0,1) = Ay € |_JAn.
n=1

Therefore, (i) is proved.

(ii) By contradiction.



Examples

Prove that U;Z, (0, 7251 = (0, 1).
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Examples & AIMLL

Proof.
(i) step 1: U, (0, =5] € (0,1). Let x € U2, (0, 5], then x € (0, 5] for somen > 1.
Thus, 0 < x < ni—l < 1, which implies that x € (0, 1).

(i) step 2: (0,1) € U;2,(0, —5]. Let x € (0,1), and define e =1 —x > 0. Then, there
exists a number N such that

N
£ > - 1.
N-1 '
Therefore,
N N
l-x=¢e>1- —— - x< .
N+1 N+1
Hence,
N %)

N n n
X € (O, T] € nL:J(O, F] S rg(o, n—]



Examples

Example 3
Show that

0 1
Q(l— E,3] =[1,3].



o fields )

Definition 4

Let Q be a sample space. F is a o-field if
(i) Qe F,;

(i) If A e &F,then A® € F;

(iii) If Ay, Ao, - - € F, then

NG
>
m
Y
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Proposition 5

(i) e &F;

(i) If Ay, Ag, -

(iii) If A1, Ao,

- € F, then

..., A, € F, then
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Borel setin R ? A3 Wi %Y

"

Definition 6

The Borel set in R, denoted by %(R), is defined as the smallest o-field containing all
intervals (a, b] where a < b € R.



Proposition 7

(i) For any x € R,

(ii) For any x <y € R,

(x} € B(R).

(X, y): [X, y): [X, y]’ (_OO’ y]: (X, OO) € ‘%(R)



Increasing events & AIMLL

In the context of probability, increasing events are events that become more likely to occur
as additional information is given.

Definition 8
A sequence of events {E,,n > 1} is said to be an increasing sequence if

EiCEyC---CE, CEp1 C....

Example 9

An example of increasing events can be rolling a fair six-sided die:
m Event E;: The outcome is less than or equal to 3.

m Event E;: The outcome is less than or equal to 4.

m Event E3: The outcome is less than or equal to 5.



Limit of increasing events .
Definition 10
If {E,,n > 1} is an increasing sequence of events, then lim E, is defined by
n—o0o
lim E, = |_JE;.

n—oo

1l
—

£
The following proposition is the so called monotone property:
Proposition 11

If {E,,n > 1} is an increasing sequence of events with E,, = lim E,, then

n—oo

P(Ee) = lim P(Ey).
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Proof.

Define the events F,, for n > 1 by
Fy=Ey, Fy=E2\E, ..., Fy=E,\En,

In words, F;, consists of those outcomes in E,; which are not in any of the earlier Ej, j < n.
It is easy to verify that F, are mutually exclusive events such that

n n
UFi = UEi =E, foralln>1andn=co.
i=1 i=1

Then,

]P(Eoo) = ]P(COJ Fi) = i]P(Fl) = lim Zn:]P(Fl) = lim ]P(O Fi)
=il =i n—oo =1 n—oo =1

= lim P(E,). [
n—oo
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Decreasing events ? A3 MY

Definition 12
A sequence {E,,n > 1} is said to be a decreasing seqeunce if E; D Es D .... lts limitis
defined by

Il
—

L

Proposition 13

If {E,,n > 1} is decreasing with E, = lim E,, then
n—oo

P(Es) = lim P(Ey).
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Axioms of continuity ? ALY

Proposition 14 (Axioms of continuity)

If E, | @, then P(E,) — 0 as n — oo.

Remark
This proposition is a special case of the monotone property.

Theorem 15

The axioms of finite additivity and continuity fogether are equivalent to the axiom of
countable additivity.

—___ — equivalent | —
Finite Additivity & Continuity Countable Additivity
| l




Proof.

Step 1. Proof of “Countable additivity” = “Finite Additivity & Continuity”. Proved.

Step 2. Proof of “Finite Additivity & Continuity” = “Countable additivity”. Let {E,,n > 1}
be pairwise disjoint, then F, := U7 | Ex | @. By the “Continuity” property, lim, .o P(F,) =
0. If “Finite additivity” is assumed, then

1> ]P(O Ei) = JP(C) El-) +P(F,) = Z P(E;) + P(F,).
i=1 i=1 i=1

Let a, = X1, P(E;). It follows that a, T and bounded by 1 (why?), and thus the limit
lim,_, a, exists. Taking limits on both sides yields

]P(G Ei) = lim a, + nll_I)Iolo ]P(Fn) = i]P(El) |

i=1 e i=1



Example: Tossing a Coin & AIMLE

20

Example 16 (Problem Statement)

Consider an experiment where a fair coin is tossed until the first head appears. Let
A; be the event that the first head appears on or before the i-th toss. Asi increases,
A; forms an increasing sequence of events.

Application of Continuity Property

According to the first continuity property, we can say that the probability of getting a head
eventually is the limit of the probabilities of A; as i goes to infinity, i.e.,

P(|_JAi| = lim P(A;) = lim (1 -27) = 1.
i=1 1—00 11— 00



Probability zero sets ?

@ has probability 0, but the inverse is not correct:
Not all of probability zero sets are empty.
For example, in the probability space (%, %, m),

m({0.5}) =m ﬁ(0.5 - %,0.5] = lim m((0.5 - i, 0.5]) =

nel n n—oo 2n

Intuitively, the set {0.5} has length 0, and then the probability of {0.5} is 0.
As a result,

21

m([a,b]) = m((a, b)),
because m({a}) = m({b}) = 0.
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A formal definition of probability zero sets ? AWk AY

22

Definition 17

Let (Q, #,P) be a probability space. A set E € F is said to have probability zero if for any
€ > 0, there exists a countable number of subsets E, such that E c U’ | E,, and

i P(E,) < ¢.
n=1

Example 18 (The rational humber set has probability zero)

In the probability space (%, %, m), let E=Q N (0, 1] be the collection of all rational
number in % = (0,1]. Then, IP(E) = 0.



Almost surely ? A MHAY
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When we make probabilistic claims without considering the measure zero sets, we say that
an event happens almost surely.

Definition 19 (Almost surely)

An event E is said to hold almost surely (a.s.) if P(E) = 1.

Example 20 (Irrational numbers)

In the probability space (%, %, m), let E be the event containing all of the irrational
numbers. Then

P(E) = 1.

23



Problems

1. fA; C Ay C A3 C

True
() False

24

... then

]P(U1 Aj) = glf P(A;)
l:

XN
(& A ML
250 A/ soumem uuvess Orscience anp Tecowocy
Lagur”



Problems

2. IfA1 2 Ay D A3 2 ..., then

True
() False

25

P(( ) Ai) = lim P(4))
i1 i—00

XN
(& A ML
250 A/ soumem uuvess Orscience anp Tecowocy
Lagur”



Further reading

(1]

(2]

3]
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Sheldon M. Ross (BI/RE-M. ZHf).

A first course in probability (## % & A& zh#42): Chapters 1 and 2.

10th edition (JRFBEE+HR), AT AR+t

Sheldon M. Ross (i§{/RE - M. ZH).

Introduction to Probability Models (# %428 §-44): Chapter 1.
12th edition (JRFBE+ZHR), A RHBE HhRkit

Kai-Lai Chung ($97F3k).

A course in probability theory (# % #42): Chapter 2.

3rd edition ([RPE=hR), AT ARt

([ ‘31%4%&52%:
NIt



Further reading

[4] Dimitri P. Bertsekas and John N. Tsitsiklis.
Introduction to Probability.

2nd Edition. MIT.
[5] Stanley H. Chan.

Introduction to Probability for Data Science.

Michigan Publishing. (FREE on website)
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