一些补充的材料

Foundation of Probability Theory/STA 203

Zhuosong ZHANG

Department of Statistics and Data Science, SUSTech

Fall, 2023

Monotone property

Unions and intersections

3

Let $\mathscr F$ be a finite or countable index set. Let $\{A_j, j \in \mathscr F\}$ be a family of sets.

$$
\bigcup_{j \in \mathcal{J}} A_j = \{x : x \in A_j \text{ for some } j \in \mathcal{J}\},
$$

$$
\bigcap_{j \in \mathcal{J}} A_j = \{x : x \in A_j \text{ for all } j \in \mathcal{J}\}.
$$

Example

Example 1

Consider the following collection of sets indexed by ℕ:

$$
A_1 = (0, 1), \quad A_2 = (0, \frac{1}{2}), \quad A_3 = (0, \frac{1}{3}), \quad \dots, A_n = (0, \frac{1}{n}), \dots
$$

Show that

4

(i) $\bigcup_{n=1}^{\infty} A_n = (0, 1);$

(ii) $\bigcap_{n=1}^{\infty} A_n = \emptyset$.

Solution.

(i) Let $x \in \bigcup_{n=1}^{\infty} A_n$, then $x \in A_n = (0, \frac{1}{n})$ for some $n \geq 1$, which further implies that $x \in (0,1)$. This shows that

$$
\bigcup_{n=1}^{\infty} A_n \subset (0,1).
$$

For the other side,

$$
(0,1)=A_1\subset\bigcup_{n=1}^\infty A_n.
$$

Therefore, (i) is proved.

(ii) By contradiction.

■

Examples

6

Example 2

Prove that $\bigcup_{n=1}^{\infty} (0, \frac{n}{n+1}] = (0, 1).$

Examples

Proof.

- (i) Step 1: $\bigcup_{n=1}^{\infty} (0, \frac{n}{n+1}] \subset (0, 1)$. Let $x \in \bigcup_{n=1}^{\infty} (0, \frac{n}{n+1}]$, then $x \in (0, \frac{n}{n+1}]$ for some $n \ge 1$. Thus, $0 \le x \le \frac{n}{n+1} < 1$, which implies that $x \in (0,1)$.
- (ii) Step 2: $(0, 1) \subset \bigcup_{n=1}^{\infty} (0, \frac{n}{n+1}]$. Let $x \in (0, 1)$, and define $\varepsilon = 1 x > 0$. Then, there exists a number N such that

$$
\varepsilon > \left| \frac{N}{N-1} - 1 \right|.
$$

Therefore,

$$
1 - x = \varepsilon > 1 - \frac{N}{N+1} \quad \implies \quad x < \frac{N}{N+1}
$$

Hence,

$$
x \in (0, \frac{N}{N+1}] \in \bigcup_{n=1}^{N} (0, \frac{n}{n+1}] \in \bigcup_{n=1}^{\infty} (0, \frac{n}{n+1}].
$$

.

7

Examples

8

Example 3
Show that
$$
\bigcap_{n=1}^{\infty} (1 - \frac{1}{n}, 3] = [1, 3].
$$

σ fields

Definition 4

Let Ω be a sample space. $\mathscr F$ is a σ -field if (i) $\Omega \in \mathcal{F}$;

- (ii) If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$;
- (iii) If $A_1, A_2, \dots \in \mathcal{F}$, then

$$
\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}.
$$

Proposition 5

(i) $\emptyset \in \mathcal{F}$;

(ii) If $A_1, A_2, \dots \in \mathcal{F}$, then

$$
\bigcap_{n=1}^{\infty} A_n \in \mathcal{F}.
$$

(iii) If $A_1, A_2, \ldots, A_n \in \mathcal{F}$, then

$$
\bigcup_{i=1}^n A_i \in \mathcal{F}.
$$

Borel set in ℝ

南方种枝大学

Definition 6

The Borel set in ℝ, denoted by $\mathcal{B}(\mathbb{R})$, is defined as the smallest σ -field containing all intervals $(a, b]$ where $a < b \in \mathbb{R}$.

Proposition 7

(i) For any $x \in \mathbb{R}$,

$$
\{x\}\in\mathscr{B}(\mathbb{R}).
$$

(ii) For any $x < y \in \mathbb{R}$,

 $(x, y), [x, y), [x, y], (-\infty, y], (x, \infty) \in \mathcal{B}(\mathbb{R}).$

In the context of probability, increasing events are events that become more likely to occur as additional information is given.

Definition 8

A sequence of events $\{E_n, n \geq 1\}$ is said to be an increasing sequence if

$$
E_1 \subset E_2 \subset \cdots \subset E_n \subset E_{n+1} \subset \ldots
$$

Example 9

An example of increasing events can be rolling a fair six-sided die: **E** Event E_1 : The outcome is less than or equal to 3.

- **Example 1** Event E_2 : The outcome is less than or equal to 4.
- **Example 1** Event E_3 : The outcome is less than or equal to 5.

Limit of increasing events

Definition 10

If $\{E_n, n\geqslant 1\}$ is an increasing sequence of events, then $\lim\limits_{n\to\infty}E_n$ is defined by

$$
\lim_{n\to\infty}E_n=\bigcup_{i=1}^\infty E_i.
$$

The following proposition is the so called monotone property:

Proposition 11

If $\{E_n, n\geqslant 1\}$ is an increasing sequence of events with $E_\infty = \lim_{n\to\infty} E_n$, then

$$
\mathbb{P}(E_{\infty}) = \lim_{n \to \infty} \mathbb{P}(E_n).
$$

Proof.

Define the events F_n for $n \geq 1$ by

$$
F_1 = E_1, \quad F_2 = E_2 \setminus E_1, \quad \ldots, \quad F_n = E_n \setminus E_{n-1}, \quad \ldots.
$$

In words, F_n consists of those outcomes in E_n which are not in any of the earlier $E_j, j < n$. It is easy to verify that F_n are mutually exclusive events such that

$$
\bigcup_{i=1}^n F_i = \bigcup_{i=1}^n E_i = E_n, \quad \text{for all } n \geq 1 \text{ and } n = \infty.
$$

Then,

$$
\mathbb{P}(E_{\infty}) = \mathbb{P}\left(\bigcup_{i=1}^{\infty} F_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(F_i) = \lim_{n \to \infty} \sum_{i=1}^{n} \mathbb{P}(F_i) = \lim_{n \to \infty} \mathbb{P}\left(\bigcup_{i=1}^{n} F_i\right)
$$

$$
= \lim_{n \to \infty} \mathbb{P}(E_n).
$$

Decreasing events

Definition 12

A sequence $\{E_n, n \geq 1\}$ is said to be a decreasing seqeunce if $E_1 \supset E_2 \supset \ldots$. Its limit is defined by

$$
\lim_{n\to\infty}E_n=\bigcap_{i=1}^{\infty}E_n.
$$

Proposition 13

If $\{E_n, n \geq 1\}$ is decreasing with $E_\infty = \lim_{n \to \infty} E_n$, then

$$
\mathbb{P}(E_{\infty}) = \lim_{n \to \infty} \mathbb{P}(E_n).
$$

Axioms of continuity

Proposition 14 (Axioms of continuity)

If $E_n \downarrow \emptyset$, then $\mathbb{P}(E_n) \to 0$ as $n \to \infty$.

Remark

This proposition is a special case of the monotone property.

Theorem 15

The axioms of finite additivity and continuity together are equivalent to the axiom of countable additivity.

Finite Additivity & Continuity \leftarrow Countable Additivity

equivalent

Proof.

Step 1. Proof of "Countable additivity" ⇒ "Finite Additivity & Continuity". Proved.

Step 2. Proof of "Finite Additivity & Continuity" \implies "Countable additivity". Let $\{E_n, n \geq 1\}$ be pairwise disjoint, then $F_n:=\cup_{k=n+1}^\infty E_k\downarrow\varnothing$. By the "Continuity" property, $\lim_{n\to\infty}\mathbb{P}(F_n)=$ 0. If "Finite additivity" is assumed, then

$$
1 \geqslant \mathbb{P}\left(\bigcup_{i=1}^{\infty} E_i\right) = \mathbb{P}\left(\bigcup_{i=1}^{n} E_i\right) + \mathbb{P}(F_n) = \sum_{i=1}^{n} \mathbb{P}(E_i) + \mathbb{P}(F_n).
$$

Let $a_n = \sum_{i=1}^n \mathbb{P}(E_i)$. It follows that $a_n \uparrow$ and bounded by 1 (why?), and thus the limit $\lim_{n\to\infty} a_n$ exists. Taking limits on both sides yields

$$
\mathbb{P}\left(\bigcup_{i=1}^{\infty} E_i\right) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} \mathbb{P}(F_n) = \sum_{i=1}^{\infty} \mathbb{P}(E_i).
$$

Example: Tossing a Coin

Example 16 (Problem Statement)

Consider an experiment where a fair coin is tossed until the first head appears. Let A_i be the event that the first head appears on or before the i -th toss. As i increases, A_i forms an increasing sequence of events.

Application of Continuity Property

According to the first continuity property, we can say that the probability of getting a head eventually is the limit of the probabilities of A_i as i goes to infinity, i.e.,

$$
\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \lim_{i \to \infty} \mathbb{P}(A_i) = \lim_{i \to \infty} (1 - 2^{-i}) = 1.
$$

Probability zero sets

- \blacksquare \oslash has probability 0, but the inverse is not correct:
- Not all of probability zero sets are empty.
- **For example, in the probability space** $(\mathcal{U}, \mathcal{B}, m)$,

$$
m(\{0.5\}) = m\left(\bigcap_{n=1}^{\infty} (0.5 - \frac{1}{2n}, 0.5] \right) = \lim_{n \to \infty} m((0.5 - \frac{1}{2n}, 0.5]) = 0.
$$

- \blacksquare Intuitively, the set $\{0.5\}$ has length 0, and then the probability of $\{0.5\}$ is 0.
- As a result,

$$
m([a,b]) = m((a,b)),
$$

because $m({a}) = m({b}) = 0$.

A formal definition of probability zero sets

Definition 17

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A set $E \in \mathcal{F}$ is said to have probability zero if for any $\varepsilon > 0$, there exists a countable number of subsets E_n such that $E \subset \cup_{n=1}^{\infty} E_n$, and

$$
\sum_{n=1}^{\infty} \mathbb{P}(E_n) < \varepsilon.
$$

Example 18 (The rational number set has probability zero)

In the probability space $(\mathcal{U}, \mathcal{B}, m)$, let $E = \mathbb{Q} \cap (0, 1]$ be the collection of all rational number in $\mathcal{U} = (0, 1]$. Then, $P(E) = 0$.

When we make probabilistic claims without considering the measure zero sets, we say that an event happens almost surely.

Definition 19 (Almost surely)

An event E is said to hold almost surely (a.s.) if $P(E) = 1$.

Example 20 (Irrational numbers)

In the probability space $(\mathcal{U}, \mathcal{B}, m)$, let E be the event containing all of the irrational numbers. Then

 $P(E) = 1.$

Problems

1. If $A_1 \subseteq A_2 \subseteq A_3 \subseteq \ldots$ then

 $\mathbb{P}(\bigcup_{i=1}^{\infty}$ $i=1$ A_i) = $\inf_{i \geq 1} \mathbb{P}(A_i)$

Problems

2. If $A_1 \supseteq A_2 \supseteq A_3 \supseteq \ldots$, then

 $\mathbb{P}(\bigcap^{\infty}$ $i=1$

 A_i) = $\lim_{i \to \infty} \mathbb{P}(A_i)$

Further reading

- [1] Sheldon M. Ross (谢尔登·M. 罗斯). A first course in probability (概率论基础教程): Chapters 1 and 2. 10th edition (原书第十版), 机械工业出版社
- [2] Sheldon M. Ross (谢尔登·M. 罗斯). Introduction to Probability Models (概率模型导论): Chapter 1. 12th edition (原书第十二版), 人民邮电出版社
- [3] Kai-Lai Chung (钟开莱).

A course in probability theory (概率论教程): Chapter 2.

3rd edition (原书第三版), 机械工业出版社

Further reading

Introduction to Probability for Data Science. Michigan Publishing. (FREE on website)

