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Learning objectives

■ Understanding the concept of conditional probability.

■ Be able to calculate it for simple examples and real-world problems.

■ Apply multiplication rule to calculate probabilities in more complex situations.

■ Learn about the law of total probability and its applications in calculating conditional
probabilities.

■ Use Bayes’ theorem to find conditional probabilities.

■ Understand the concept of independence, and know the difference between
independent events and disjoint events.

■ Learn about the concepts of experiments and independent trials.
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Conditional probability
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Conditional probability: Introduction

Example 1 (Sex and Sports)

Two psychologists surveyed 478 children in grades 4, 5, and 6 in elementary schools
in Michigan. Among other questions, they asked the students whether their primary
goal was to get good grades, to be popular, or to be good at sports. Here is a
contingency table giving the counts of the students by their goals and sex:

Grades Popular Sports Total
Boys 117 50 60 227
Girls 130 91 30 251
Total 247 141 90 478

Questions:

• What is the probability that a randomly chosen student is to excel at sports?

• What if we are given the information that the selected student is a girl?
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Solution.
■ For the first question, by the classical probability model, let 𝛺 be the collection of all

the 478 students, 𝐸 be the students whose goal was to be good at sports. Then,

ℙ(𝐸) = # of students excel at sports
Total number of students =

90
478

≈ 0.188.

■ For the second question, the probability space has changed. We now let 𝛺′ be the
collection of all girls in these 478 students, and let 𝐸′ be the collection of girls whose
goal was to good at sports. Then,

ℙ(𝐸′) = # of female students excel at sports
Total number of female students =

30
251

≈ 0.120. ■

The probability might change if we are provided with more information!
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Conditional probability

■ Conditional probability provides us with a way to reason about the outcome of an
experiment, based on partial information.

■ In an experiment involving two successive rolls of a die, you are told that the sum of the
two rolls is 9. How likely is it that the first roll was a 6?

■ In a word guessing game, the first letter of the word is a “t”. What is the likelihood that
the second letter is an “h”?

■ How likely is it that a person has a certain disease given that a medical test was
negative?

■ A spot shows up on a radar screen. How likely is it to correspond to an aircraft?
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Definition

Definition 2 (Conditional probability)
Let (𝛺,ℱ,ℙ) be a probability space, and 𝐸, 𝐹 ∈ ℱ be two events such that ℙ(𝐹) > 0. The
conditional probability of 𝐸 given 𝐹 is defined by

ℙ(𝐸 |𝐹) = ℙ(𝐸 ∩ 𝐹)
ℙ(𝐹) .

Example 3

In the “sex and sports” example, let 𝐹 be the event that the randomly chosen
student is a girl. Then,

ℙ(𝐸 |𝐹) =

#of female students who are excel at sports
Total number of students

# female students
Total number of students

=
ℙ(𝐸 ∩ 𝐹)
ℙ(𝐹) .
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Example

Example 4

In an experiment involving two successive rolls of a die, you are told that the sum
of the two rolls is 9. How likely is it that the first roll was a 6?

Solution.
Let 𝐸 be the event that the first roll was 6,
and 𝐹 be the event that the sum of the two
rolls is 9. We have

ℙ(𝐸 ∩ 𝐹) = ℙ({(6, 3)}) = 1
36

,

ℙ(𝐹) = ℙ({(3, 6), (4, 5), (5, 4), (6, 3)})

=
4
36

=
1
9
.

Then,

ℙ(𝐸 |𝐹) = 1/36
1/9 =

1
4
. ■
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Conditional probabilities specify a probability law

Let (𝛺,ℱ,ℙ) be a probability space, and let 𝐹 be an event such that ℙ(𝐹) > 0. Define the
conditional probability map ℙ̃(·) : ℱ → [0, 1] as

ℙ̃(𝐸) = ℙ(𝐸 |𝐹).

Then, (𝛺,ℱ, ℙ̃) is also a probability space.

Remark
Because (𝛺,ℱ, ℙ̃) is a probability space, ℙ(· |𝐹) satisfies all of the properties of a general
probability, for example,

ℙ(∅|𝐹) = 0, ℙ(𝐸𝑐 |𝐹) = 1 − ℙ(𝐸 |𝐹), ℙ(𝐸1 |𝐹) ⩽ ℙ(𝐸2 |𝐹) if 𝐸1 ⊂ 𝐸2

However,

ℙ(𝐸 |𝐹𝑐) ≠ 1 − ℙ(𝐸 |𝐹) in general.

9



To show that ℙ̃ is a probability measure, we only need to show the three axioms.
(i) Non-negativity: For any 𝐸 ∈ ℱ, ℙ(𝐸) ⩾ 0, then

ℙ̃(𝐸) = ℙ(𝐸 |𝐹) = ℙ(𝐸 ∩ 𝐹)
ℙ(𝐹) ⩾ 0.

(ii) Normalization:

ℙ̃(𝛺) = ℙ(𝛺 ∩ 𝐹)
ℙ(𝐹) =

ℙ(𝐹)
ℙ(𝐹) = 1.

(iii) Countable additivity: Let 𝐸1, 𝐸2, . . . be a sequence of mutually exclusive events, then
(𝐸1 ∩ 𝐹), (𝐸2 ∩ 𝐹), . . . are also mutually exclusive. Then,

ℙ̃

( ∞⋃
𝑖=1

𝐸𝑖

)
=

1
ℙ(𝐹) ℙ

( ∞⋃
𝑖=1

(𝐸𝑖 ∩ 𝐹)
)
=

1
ℙ(𝐹)

∞∑
𝑖=1

ℙ(𝐸𝑖 ∩ 𝐹) =
∞∑
𝑖=1

ℙ̃(𝐸𝑖).
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Examples

Example 5 (Examination time)

A student is taking a one-hour-time-limit
makeup examination. Suppose the probability
that the student will finish the exam in less than
𝑥 hours is 𝑥/2, for all 0 ⩽ 𝑥 ⩽ 1. Then, given that
the student is still working after 0.75 hour, what
is the conditional probability that the full hour is
used?
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Solution.
Let 𝛺 = [0, 1] ∪ {𝑁} be the sample space
where 𝑥 ∈ [0, 1] represents that the stu-
dent finishes the exam in less than 𝑥 hours,
and 𝑁 represents that the student didn’t fin-
ish the exam in one hour; in other words,
the full hour is used. Then, we can define
the probability measure as follows: for any
Borel set 𝐴 ⊂ [0, 1], ℙ(𝐴) = 𝑚(𝐴)

2 , where
𝑚(𝐴) is the Lebesgue measure of 𝐴, and
ℙ({𝑁}) = 1 − ℙ([0, 1]) = 0.5.
Let 𝐸 be the event that the student didn’t
finish the exam in one hour, and let 𝐹 be the
event that the student is still working after

0.75 hour, then

𝐸 = {𝑁}, 𝐹 = (0.75, 1] ∪ {𝑁},

and

ℙ(𝐸 ∩ 𝐹) = ℙ(𝐸) = ℙ({𝑁}) = 0.5,
ℙ(𝐹) = ℙ((0.75, 1]) + ℙ({𝑁})

=
0.25

2
+ 1

2
= 0.625.

Therefore,

ℙ(𝐸 |𝐹) = ℙ(𝐸 ∩ 𝐹)
ℙ(𝐹)

=
0.5

0.625
= 0.8. ■
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Example

Sometimes the conditional probability can be derived directly by properly choosing a proba-
bility space.

Example 6 (Bridge card)

In the card game bridge, the 52 cards
are dealt out equally to 4 players—called
East, West, North, and South. If North
and South have a total of 8 spades
among them, what is the probability that
East has 3 of the remaining 5 spades?
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Solution.
Let 𝛺 be the collections of all possible cards of the East given that 26 cards has been given
to the North and South, among which there are 8 spades. Then,

𝑁 = |𝛺| =
(
26
13

)
.

Let 𝐸 be the event that the East has 3 of the remaining 5 cards, then

|𝐸 | =
(
5
3

) (
26 − 5
13 − 3

)
=

(
5
3

) (
21
10

)
.

Therefore,

ℙ(𝐸) =

(
5
3

) (
21
10

)
(
26
13

) ≈ 0.339. ■
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Multiplication rule
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Multiplication rule

From the definition of conditional probability,

ℙ(𝐸 ∩ 𝐹) = ℙ(𝐸 |𝐹) ℙ(𝐹).

In words, the probability that both 𝐸 and 𝐹 occur is equal to the probability that 𝐹 occurs
multiplied by the conditional probability of 𝐸 given that 𝐹 occurred.
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Example

Example 7 (Course taking)

Celine is undecided as to whether to take
a French course or a chemistry course.
She estimates that her probability of
receiving an A grade would be 1/2 in a
French course and 2/3 in a chemistry
course. If Celine decides to base her
decision on the flip of a fair coin, what is
the probability that she gets an A in
chemistry?
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Solution.
Let 𝐶 denote the event that Celina takes chemistry and 𝐴 denote the event that she receives
an A in whatever course she takes. Then, the probability that she gets an A in chemistry is

ℙ(𝐴 ∩ 𝐶) = ℙ(𝐶) ℙ(𝐴 |𝐶) = 1
2
× 2

3
=

1
3
. ■
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Example

Example 8 (Aircraft detection)

If an aircraft is present in a certain area,
a radar detects it and generates an alarm
signal with probability 0.99. If an aircraft
is not present. The radar generates a
(false) alarm, with probability 0.10. We
assume that an aircraft is present with
probability 0.05. What is the probability
of no aircraft presence and a false
alarm? What is the probability of aircraft
presence and no detection?
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Let 𝐴 be the event that an aircraft is present, and let 𝐵 be the event that the radar generates
an alarm. Then, we have the following graph:

Origin

𝐴

𝐴𝑐

𝐴 ∩ 𝐵

𝐴 ∩ 𝐵𝑐

𝐴𝑐 ∩ 𝐵

𝐴𝑐 ∩ 𝐵𝑐

ℙ(𝐴
) =

0.0
5

ℙ(𝐴 𝑐) = 0.95

ℙ(𝐵 |𝐴)
= 0.99

ℙ(𝐵 |𝐴
𝑐 ) = 0.1 false alarm

ℙ(𝐵 𝑐|𝐴) = 0.01 missed detection

ℙ(𝐵 𝑐|𝐴 𝑐) = 0.9
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Examples

Example 9 (Drawing balls)

Suppose that an urn contains 8 red balls and 4 white balls. We draw 2 balls from
the urn without replacement.
(a) If we assume that at each draw each ball in the urn is equally likely to be

chosen, what is the probability that both balls drawn are red?

(b) Now suppose that the balls have different weights, with each red ball having
weight 𝑟 and each white ball having weight 𝑤. Suppose that the probability
that a given ball in the urn is the next one selected is its weight divided by the
sum of the weights of all balls currently in the urn. Now what is the probability
that both balls are red?
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Solution to (a).
Let 𝑅1 and 𝑅2 denote the events that the first and second balls drawn are red, respectively.
Then,

ℙ(𝑅1) =
8
12

=
2
3
.

Given that the first ball selected is red, there are 8 remaining red balls and 4 white balls,
so

ℙ(𝑅2 |𝑅1) =
7
11

.

Therefore, by the multiplication rule,

ℙ(𝑅1 ∩ 𝑅2) = ℙ(𝑅1) ℙ(𝑅2 |𝑅1) =
(
2
3

) (
7
11

)
=

14
33

. ■
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Solution to (b).
Let 𝑅1 and 𝑅2 be as defined in (a). Then,

ℙ(𝑅1) =
8𝑟

8𝑟 + 4𝑤
.

Given that the first ball is red, then the urn contains 7 red and 4 white balls. Then,

ℙ(𝑅2 |𝑅1) =
7𝑟

7𝑟 + 4𝑤
.

Therefore, by the multiplication rule,

ℙ(𝑅1 ∩ 𝑅2) = ℙ(𝑅1) ℙ(𝑅2 |𝑅1) =
(

8𝑟
8𝑟 + 4𝑤

) (
7𝑟

7𝑟 + 4𝑟

)
. ■
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General multiplication rule

Proposition 10 (The multiplication rule)

Let (𝛺,ℱ,ℙ) be a probability space, and let 𝐸1, 𝐸2, · · · ∈ ℱ be a sequence of events.
Then,

ℙ(𝐸1 ∩ 𝐸2 ∩ · · · ∩ 𝐸𝑛)
= ℙ(𝐸1) ℙ(𝐸2 |𝐸1) ℙ(𝐸3 |𝐸1 ∩ 𝐸2) . . .ℙ(𝐸𝑛 |𝐸1 ∩ 𝐸2 ∩ · · · ∩ 𝐸𝑛−1).

Proof.
The proof follows from a recursive argument. ■
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Examples

Example 11 (Playing cards)

An ordinary deck of 52 playing cards is
randomly divided into 4 piles of 13 cards
each. Compute the probability that each
pile has exactly 1 ace.
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Solution.
Define the events

𝐸1 = {the A♠ is in any one of the piles},
𝐸2 = {the Ar and A♠ are in different piles},
𝐸3 = {the Ar, Aq and A♠ are in different piles},
𝐸4 = {all of the aces are in different piles},

then, by the multiplication rule, the desired probability is

ℙ(𝐸1 ∩ 𝐸2 ∩ 𝐸3 ∩ 𝐸4) = ℙ(𝐸1) ℙ(𝐸2 |𝐸1) ℙ(𝐸3 |𝐸1 ∩ 𝐸2) ℙ(𝐸4 |𝐸1 ∩ 𝐸2 ∩ 𝐸3).
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Now, ℙ(𝐸1) = 1. Also, as there are 39 slots in piles other than the pile containing A♠, while
there are 51 slots overall, it follows that

ℙ(𝐸2 |𝐸1) =
39
51

, ℙ(𝐸3 |𝐸1 ∩ 𝐸2) =
26
50

, and ℙ(𝐸4 |𝐸1 ∩ 𝐸2 ∩ 𝐸3) =
13
49

.

Therefore, ℙ(𝐸1 ∩ 𝐸2 ∩ 𝐸3 ∩ 𝐸4) =
( 39

51
) ( 26

50
) ( 13

49
)
≈ 0.105. ■
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Total probability theorem
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Introduction

Let 𝐸 and 𝐹 be events, and we may express 𝐸 as

𝐸 = (𝐸 ∩ 𝐹) ∪ (𝐸 ∩ 𝐹𝑐).

𝛺

𝐸 𝐹𝐸 ∩ 𝐹𝑐 𝐸 ∩ 𝐹

As 𝐸 ∩ 𝐹 and 𝐸 ∩ 𝐹𝑐 are mutually exclusive, then

ℙ(𝐸) = ℙ(𝐸 ∩ 𝐹) + ℙ(𝐸 ∩ 𝐹𝑐)
= ℙ(𝐸 |𝐹) ℙ(𝐹) + ℙ(𝐸 |𝐹𝑐) ℙ(𝐹𝑐).
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Partition of 𝛺

Definition 12 (Partition)

We say 𝐹1, 𝐹2, . . . form a partition of 𝛺 if
(a) they are mutually exclusive, and

(b)
∞⋃
𝑖=1

𝐹𝑖 = 𝛺.

𝛺

𝐹1

𝐹2
𝐹3

𝐹4
𝐹5

𝐹6
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Total probability theorem

Theorem 13 (Law of total probability (Total probability theorem))

Let 𝐹1, 𝐹2, . . . be mutually exclusive events
that form a partition of the sample space:
𝛺 =

⋃∞
𝑖=1 𝐹𝑖. Assume that ℙ(𝐸 |𝐹𝑖) = 0 if

ℙ(𝐹𝑖) = 0. Then,

ℙ(𝐸) =
∞∑
𝑖=1

ℙ(𝐹𝑖) ℙ(𝐸 |𝐹𝑖).

𝛺

𝐹1

𝐹2 𝐹3

𝐹4

𝐹5

𝐸

31



Examples

Example 14 (Tennnis tournament)

Suppose there are three types of play-
ers in a tennis tournament: A, B, and
C. 50% of the contestants in the tour-
nament are A players, 25% are B play-
ers, and 25% are C players. Your chance
of beating the contestants depends on
the class of the player, as follows: 0.3
against an A player 0.4 against a B
player 0.5 against a C player. If you play
a match in this tournament, what is the
probability of your winning the match?
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Solution.
Let 𝐴 be the event that you will playing a
match with an A class player, and let 𝐵 and
𝐶 be defined similarly. Then, 𝐴 ∪ 𝐵 ∪ 𝐶 = 𝛺
and they are also mutually exclusive. Let 𝑊
be the event that you win the match.

𝑊

𝐴

𝐵

𝐶

By the law of total probability,

ℙ(𝑊) = ℙ(𝐴) ℙ(𝑊 |𝐴) + ℙ(𝐵) ℙ(𝑊 |𝐵) + ℙ(𝐶) ℙ(𝑊 |𝐶)
= (0.3)(0.5) + (0.4)(0.25) + (0.5)(0.25)
= 0.375. ■
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Question

Suppose that we have known that you have win the match, what is the conditional
probability that you were playing with an A class player?

In general, if we know ℙ(𝑊 |𝐴), how can we reverse the conditioning to get the con-
ditional probability ℙ(𝐴 |𝑊)?
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Example

Example 15 (False positive or false negative)

Let Covid denote the event that a
randomly chosen person actually having
Covid-19. Let 𝑃 denote the event of
testing positive, and 𝑁 that of testing
negative. Suppose that we know that
ℙ(𝑃 |Covid𝑐) = 0.01 and
ℙ(𝑁 |Covid) = 0.001. Moreover,
ℙ(Covid) = 0.00005.

We are now interested in the probability
that a person had Covid given that he
tested negative ℙ(Covid |𝑁)?
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Solution.
Note that

ℙ(𝑁 |Covid𝑐) = 1 − ℙ(𝑃 |Covid𝑐) = 1 − 0.01 = 0.99,

and

ℙ(Covid𝑐) = 1 − ℙ(Covid) = 1 − 0.00005 = 0.99995.

By the law of total probability,

ℙ(𝑁) = ℙ(𝑁 |Covid) ℙ(Covid) + ℙ(𝑁 |Covid𝑐) ℙ(Covid𝑐)
= (0.001)(0.00005) + (0.99)(0.99995) = 0.98995055.

Then,

ℙ(Covid |𝑁) = ℙ(𝑁 |Covid) ℙ(Covid)
ℙ(𝑁) =

(0.001)(0.00005)
0.98995055

= 5 × 10−8. ■
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Bayes’ formula
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Beyes’ formula

Theorem 16
Let 𝐸1, 𝐸2, . . . be a partition of the sample sample. Then, for any event 𝐹 such that
ℙ(𝐹) > 0, we have

ℙ(𝐸𝑖 |𝐹) =
ℙ(𝐸𝑖) ℙ(𝐹 |𝐸𝑖)

ℙ(𝐹)

=
ℙ(𝐸𝑖 |𝐹) ℙ(𝐹)∑∞
𝑗=1 ℙ(𝐸 𝑗 |𝐹) ℙ(𝐹)

.

Remark
The result is a formula known as Bayes’Rule, after the Reverend Thomas Bayes (托马斯·
贝叶斯神父, 1702?–1761).
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Examples

Example 17 (Aircraft and radar, revisited)

What is the probability that the aircraft is present given that the radar generated
an alarm?

Solution.
Recall that

ℙ(𝐴) = 0.05, ℙ(𝐵 |𝐴) = 0.99, ℙ(𝐵 |𝐴𝑐) = 0.1.

Applying Bayes’ formula, we obtain

ℙ(𝐴 |𝐵) = ℙ(𝐴) ℙ(𝐵 |𝐴)
ℙ(𝐴) ℙ(𝐵 |𝐴) + ℙ(𝐴𝑐) ℙ(𝐵 |𝐴𝑐)

=
(0.05) (0.99)

(0.05)(0.99) + (0.95) (0.1) ≈ 0.3426. ■
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The Three Prisoners problem

Example 18

Once upon a time, there were three prisoners , , and . One day, decided
to pardon two of them and sentence the last one. One of the prisoners, , heard
the news and wanted to ask a friendly about his situation. was honest, and
he was allowed to tell that would be pardoned or that would be pardoned,
but he could not tell whether he would be pardoned.
What is the conditional probability that will be pardoned given that the tells
him will be pardoned?

从前，有三个囚犯 , , 。有一天，国王 决定赦免其中两个人并判处第三个人。

其中一名囚犯 ，听到这个消息，想向一位 询问他的情况。 是老实人，他可以说
哪个会被赦免，但他不准说明谁不会被赦免。假设告诉他告诉了 , 囚犯 将要被赦免，
则 被赦免的条件概率是多少？
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Solution.
Let 𝐴, 𝐵, 𝐶 denote the event that 、 、 will be sentenced, respectively, and let 𝐷

denote that tells that will be pardoned. Then,

ℙ(𝐴) = ℙ(𝐵) = ℙ(𝐶) = 1
3
,

and

ℙ(𝐷 |𝐴) = 1
2
, ℙ(𝐷 |𝐵) = 0, ℙ(𝐷 |𝐶) = 1.

Therefore, by the Bayes’ theorem,

ℙ(𝐴|𝐷) = ℙ(𝐷 |𝐴) ℙ(𝐴)
ℙ(𝐷)

=
(1/2)(1/3)

(1/2)(1/3) + (0)(1/3) + (1) (1/3) =
1
3
.

Therefore, the conditional probability is 1/3. ■
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Independent events

43



Independence

■ We’ve said informally that what we mean by independence is that the outcome of one
event does not influence the probability of the other.

■ With the help of conditional probabilities, we can understand the independence as

ℙ(𝐵 |𝐴) = ℙ(𝐵).

■ No matter whether 𝐴 happens, the probability of 𝐵 does not change.

■ However, ℙ(𝐵 |𝐴) implies ℙ(𝐴) > 0, which is a strict condition.

Definition 19 (Independence)
Events 𝐴 and 𝐵 are said to be mutually independent if

ℙ(𝐴 ∩ 𝐵) = ℙ(𝐴) × ℙ(𝐵).
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Examples

Example 20

A card is selected at random from an or-
dinary deck of 52 playing cards. If 𝐸 is
the event that the selected card is an A
and 𝐹 is the event that it is a ♠, whether
𝐸 and 𝐹 are independent? Why or why
not?

Solution.
The answer is “Yes”. This follows because ℙ(𝐸𝐹) = 1/52, whereas ℙ(𝐸) = 4/52 and
ℙ(𝐹) = 13/52. ■
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Properties of independence

Proposition 21

If 𝐸 and 𝐹 are independent, then so are 𝐸 and 𝐹𝑐.

Proof.
Assume that 𝐸 and 𝐹 are independent. Since 𝐸 = (𝐸 ∩ 𝐹) ∪ (𝐸 ∩ 𝐹𝑐) and 𝐸 ∩ 𝐹 and 𝐸 ∩ 𝐹𝑐

are obviously mutually exclusive, we have

ℙ(𝐸) = ℙ(𝐸 ∩ 𝐹) + ℙ(𝐸 ∩ 𝐹𝑐)

or, equivalently,

ℙ(𝐸 ∩ 𝐹𝑐) = ℙ(𝐸) − ℙ(𝐸 ∩ 𝐹) = ℙ(𝐸) [1 − ℙ(𝐹)] = ℙ(𝐸) ℙ(𝐹𝑐)

and the result is proved. ■
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Example

Suppose now that 𝐸 is independent of 𝐹 and is also independent of 𝐺. Is 𝐸 then necessarily
independent of 𝐹∩𝐺? The answer, somewhat surprisingly, is no, as the following example
demonstrates.

Example 22 (Counterexample)

Two fair dice are thrown. Let 𝐸 denote the event that the sum of the dice is 7. Let 𝐹
denote the event that the first die equals 4 and 𝐺 denote the event that the second
die equals 3.
(i) Whether 𝐸 and 𝐹 are independent?

(ii) Whether 𝐸 and 𝐹 ∩ 𝐺 are independent?
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Solution to Question (i).
The sample space is given by 𝛺 = {(𝑖, 𝑗) : 1 ⩽ 𝑖, 𝑗 ⩽ 6}. We have 𝐸 =
{(1, 6), (2, 5), . . . , (6, 1)}, then

ℙ(𝐸) = |𝐸 |
|𝛺| =

1
6
.

Moreover, 𝐹 = {(4, 1), (4, 2) . . . , (4, 6)}, then

ℙ(𝐹) = |𝐹 |
|𝛺| =

1
6
.

On the other hand, 𝐸 ∩ 𝐹 = {(4, 2)}, then

ℙ(𝐸 ∩ 𝐹) = 1
36

.

Then, it follows that ℙ(𝐸∩ 𝐹) = ℙ(𝐸) ·ℙ(𝐹) which implies that 𝐸 and 𝐹 are independent. ■
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General independence

Definition 23 (Independence for three events)
Three events 𝐸, 𝐹, and 𝐺 are said to be independent if:

ℙ(𝐸 ∩ 𝐹 ∩ 𝐺) = ℙ(𝐸) ℙ(𝐹) ℙ(𝐺)
ℙ(𝐸 ∩ 𝐹) = ℙ(𝐸) ℙ(𝐹)
ℙ(𝐸 ∩ 𝐺) = ℙ(𝐸) ℙ(𝐺)
ℙ(𝐹 ∩ 𝐺) = ℙ(𝐹) ℙ(𝐺)
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General independence

Definition 24
Of course, we may also extend the definition of independence to more than three events.
The events 𝐸1, 𝐸2, ..., 𝐸𝑛 are said to be independent if, for every subset 𝐸′1, 𝐸′2, ..., 𝐸′𝑟, 𝑟 ⩽ 𝑛,
of these events:

ℙ(𝐸′1𝐸′2 · · · 𝐸′𝑟) = ℙ(𝐸′1) ℙ(𝐸′2) · · ·ℙ(𝐸′𝑟)

Finally, we define an infinite set of events to be independent if every finite subset of those
events is independent.
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General independence

Definition 25
■ Sometimes, a probability experiment under consideration consists of performing a

sequence of subexperiments .

■ More formally, we say that the subexperiments are independent if 𝐸1, 𝐸2, . . . is neces-
sarily an independent sequence of events whenever 𝐸𝑖 is an event whose occurrence
is completely determined by the outcome of the 𝑖th subexperiment.

■ If each subexperiment has the same set of possible outcomes, then the subexperi-
ments are often called trials .
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Examples

Example 26

An infinite sequence of independent trials is to be performed. Each trial results in a
success with probability 𝑝 and a failure with probability 1− 𝑝. What is the probability
that:
(a) at least 1 success occurs in the first 𝑛 trials?

(b) exactly 𝑘 successes occur in the first 𝑛 trials?

S S S SF F F F F. . .

𝑛 trials including successes and failures
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Solution to (a).
In order to determine the probability of at least 1 success in the first 𝑛 trials, it is easiest
to compute first the probability of the complementary event: that of no success in the first
𝑛 trials.

F F F F F F F F F. . .

all failures
Let 𝐸𝑖 denote the event of a failure on the 𝑖th trial, then ℙ(𝐸𝑖) = 1− 𝑝 and the probability
of no successes is

ℙ(𝐸1 ∩ · · · ∩ 𝐸𝑛) =
𝑛∏
𝑖=1

ℙ(𝐸𝑖) = (1 − 𝑝)𝑛.

Therefore, the probability of at least one success is

ℙ(𝐸𝑐
1 ∪ · · · ∪ 𝐸𝑐

𝑛) = 1 − (1 − 𝑝)𝑛. ■
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Solution to (b).
Consider any particular sequence of the first 𝑛 outcomes containing 𝑘 successes and 𝑛 − 𝑘
failures.

S S S S SF F F F. . .

𝑛 trials including 𝑘 successes and 𝑛 − 𝑘 failures
Each particular sequence of these events occur with probability 𝑝𝑘 (1 − 𝑝)𝑘.
Since there are

(𝑛
𝑘

)
such sequences, the desired probability in (b) is

ℙ{exact 𝑘 successes} =
(
𝑛

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑘. ■
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Examples

Example 27

A system composed of 𝑛 separate components is said to be a parallel system if it
functions when at least one of the components functions. For such a system, if
component 𝑖, which is independent of the other components, functions with prob-
ability 𝑝𝑖, 𝑖 = 1, . . . , 𝑛, what is the probability that the system functions?

Start End

𝑝1

𝑝2

𝑝3

𝑝𝑛

...
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Solution.
Let 𝐴𝑖 denote the event that component 𝑖 functions. Then,

ℙ{system functions} = ℙ

( 𝑛⋃
𝑖=1

𝐴𝑖

)
= 1 − ℙ

( 𝑛⋂
𝑖=1

𝐴𝑐
𝑖

)
= 1 −

𝑛∏
𝑖=1

ℙ(𝐴𝑐
𝑖 )

= 1 −
𝑛∏
𝑖=1

(1 − 𝑝𝑖). ■
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Examples

Example 28

Independent trials consisting of rolling a pair of fair dice are performed. What is the
probability that an outcome of 5 appears before an outcome of 7 when the outcome
of a roll is the sum of the dice?
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Solution.
Let 𝐸𝑛 denote the event that no 5 or 7 appears on the first 𝑛 − 1 trials, and a 5 appears
on the 𝑛th trial, then the desired probability is

ℙ

(
∞⋃
𝑛=1

𝐸𝑛

)
=

∞∑
𝑛=1

ℙ(𝐸𝑛).

Since

ℙ{5 on any trial} = 1
9
, ℙ{7 on any trial} = 1

6
,

we obtain ℙ(𝐸𝑛) = 1
9
(
1 − 1

9 − 1
6
)𝑛−1 = 1

9
( 13

18
)𝑛−1

. Thus,

ℙ

(
∞⋃
𝑛=1

𝐸𝑛

)
=

1
9

∞∑
𝑛=1

(
13
18

)𝑛−1
=

2
5
. ■
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Disjoint events and independent events

■ Disjoint events and independent events are two different concepts in probability theory.

■ Disjoint events are events that have no outcomes in common, meaning that they cannot
occur simultaneously.

■ On the other hand, independent events are events where the occurrence of one event
does not affect the probability of the other event occurring.
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Disjoint events and independent events

Example 29

Suppose we are rolling a fair six-sided die. Let 𝐴 be the event that we get an even
number ( , , or ), and let 𝐵 be the event that we get a number greater than 4
( or ).
𝐴 and 𝐵 are not disjoint because there is one outcome ( ) that satisfies both
events. However, 𝐴 and 𝐵 are independent because the probability of getting an
even number is 1/2 and the probability of getting a number greater than 4 is 1/3,
but the probability of getting an even number and a number greater than 4 is
(1/2)(1/3) = 1/6, which is the probability of getting a 6.
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Summary of Conditional Probability

■ Conditional probability measures the probability of an event given that another event
has occurred.

■ The conditional probability of event 𝐴 given event 𝐵 is denoted as 𝑃(𝐴|𝐵) and is defined
as:

𝑃(𝐴|𝐵) = 𝑃(𝐴 ∩ 𝐵)
𝑃(𝐵) , if 𝑃(𝐵) ≠ 0

■ The multiplication rule states that for any two events 𝐴 and 𝐵, the probability of the
intersection of 𝐴 and 𝐵 can be calculated as:

ℙ(𝐴 ∩ 𝐵) = ℙ(𝐴|𝐵) · ℙ(𝐵) = ℙ(𝐵|𝐴) · ℙ(𝐴)
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Summary of Conditional Probability

■ The Law of Total Probability states that for any partition 𝐵1, 𝐵2, . . . , 𝐵𝑛 of the sample
space, the probability of an event 𝐴 can be calculated as:

ℙ(𝐴) =
𝑛∑
𝑖=1

ℙ(𝐴|𝐵𝑖) · ℙ(𝐵𝑖)

■ Two events 𝐴 and 𝐵 are independent if and only if ℙ(𝐴 ∩ 𝐵) = ℙ(𝐴) · ℙ(𝐵).

■ Bayes’ Theorem allows us to calculate the conditional probability of one event given
another event in terms of the reverse conditional probability:

ℙ(𝐴|𝐵) = ℙ(𝐵|𝐴) · ℙ(𝐴)
ℙ(𝐵)
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Further reading

[1] Sheldon M. Ross (谢尔登·M.罗斯).

A first course in probability (概率论基础教程): Chapter 3.

10th edition (原书第十版),机械工业出版社
[2] Sheldon M. Ross (谢尔登·M.罗斯).

Introduction to Probability Models (概率模型导论): Chapter 1.

12th edition (原书第十二版),人民邮电出版社
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