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Outcomes, sample space, and events
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Sample space and events

In order to define probability model, we first consider sample space and events.

Definition 2 (Sample space)
This set of all possible outcomes of an experiment is known as the sample space of the
experiment and is denoted by 𝛺.

Example 3

(a) If the outcome of an experiment consists in the determination of the sex of a
newborn child, then

𝛺 = {𝑔, 𝑏}.

(b) If the outcome of an experiment is the order of finish in a race among the 7
horses having post positions 1, 2, 3, 4, 5, 6, and 7, then,

𝛺 = {all 7! permutations of (1, 2, 3, 4, 5, 6, 7)}.
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Example, cont’d

Example 4 (Your turn)

(a) If the experiment consists of flipping two coins, then the sample space consists
of the following four points:

(b) If the experiment consists of measuring (in hours) the lifetime of a Television,
then the sample space is :
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Events

Definition 5 (Events)
Any subset of the sample space is known as an event, which is denoted by capital letters
𝐴, 𝐵, 𝐸 and so on.

Example 6

(a) 𝐴 = {𝑔}.

(b) 𝐵 = {all outcomes in 𝛺 starting with a 3}.

(c) 𝐸 = {𝑥 : 0 ! 𝑥 ! 5}.
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Event operations: definitions

(i) Either 𝐴 or 𝐵 happens: Union 𝐴 ∪ 𝐵.

(ii) Both 𝐴 and 𝐵 happens: Intersection 𝐴 ∩ 𝐵. (In some textbooks, 𝐴 ∩ 𝐵 is also written as
𝐴𝐵 for brevity.)

(iii) 𝐴 does not happen: complement 𝐴𝑐.

Union 𝐴 ∪ 𝐵

𝛺

𝐴 𝐵𝐴

Intersection 𝐴 ∩ 𝐵

𝛺

𝐴 𝐵

Complement 𝐴𝑐

𝛺

𝐴 𝐴𝑐
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Event operations: definitions, cont’d

(iv) Null event ∅ := 𝛺𝑐.

(v) If 𝐴 ∩ 𝐵 = ∅, then 𝐴 and 𝐵 are said to be mutually exclusive, or disjoint.

(vi) If all of the outcomes in 𝐴 are also in 𝐹, then we say 𝐴 is contained in 𝐵, or 𝐴 is a subset
of 𝐵, denoted by 𝐴 ⊂ 𝐵.

(vii) If 𝐴 ⊂ 𝐵 and 𝐵 ⊂ 𝐴, then 𝐴 = 𝐵.

Mutually exclusive

𝛺

𝐴 𝐵

Subset: 𝐴 ⊂ 𝐵

𝛺

𝐴 𝐵
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Event operations: definitions, cont’d

(viii) Difference: 𝐴 \ 𝐵 = 𝐴 ∩ 𝐵𝑐. (In some textbooks, 𝐴 \ 𝐵 is written as 𝐴 − 𝐵.)

(ix) Symmetric difference: 𝐴△𝐵 = (𝐴 \ 𝐵) ∪ (𝐵 \ 𝐴).

(x) Singleton: {𝜔}.

Difference: 𝐴 \ 𝐵

𝛺

𝐴 𝐵

Symmetric difference: 𝐴△𝐵

𝛺

𝐴 𝐵

Singleton

𝛺

{𝜔}
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Set Operators and their meanings in Probability Theory

Set Operator Notation Description Meaning in Probability

Union 𝐴 ∪ 𝐵 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵 either 𝐴 or 𝐵 or both occur

Intersection 𝐴 ∩ 𝐵 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵 both 𝐴 and 𝐵 occur

Complement 𝐴𝑐 𝑥 ∉ 𝐴 𝐴 does not occur

Difference 𝐴\𝐵 𝑥 ∈ 𝐴 but 𝑥 ∉ 𝐵 𝐴 occurs but 𝐵 does not

Sym. Diff. 𝐴𝛥𝐵 𝑥 ∈ 𝐴 ∪ 𝐵 but 𝑥 ∉ 𝐴 ∩ 𝐵 either 𝐴 or 𝐵 occurs but not both

Table: Set Operators and their meanings in Probability Theory
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Event operations: Some propositions

Proposition 7

(i) The operations of forming unions, intersections, and complements of events obey
certain rules similar to the rules of algebra. We list a few of these rules:
(a) Commutative laws: 𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴, 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴.
(b) Associative laws:

(𝐴 ∪ 𝐵) ∪ 𝐶 = 𝐴 ∪ (𝐵 ∪ 𝐶), (𝐴 ∩ 𝐵) ∩ 𝐶 = 𝐴 ∩ (𝐵 ∩ 𝐶).

(c) Distributive laws:

(𝐴 ∪ 𝐵) ∩ 𝐶 = (𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶),
(𝐴 ∩ 𝐵) ∪ 𝐶 = (𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶).
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Event operations: Some propositions

Proposition 8

(ii) DeMorgan’s laws:
(

𝑛⋃
𝑖=1

𝐴𝑖

) 𝑐
=

𝑛⋂
𝑖=1

𝐴𝑐
𝑖 ,

(
𝑛⋂
𝑖=1

𝐴𝑖

) 𝑐
=

𝑛⋃
𝑖=1

𝐴𝑐
𝑖 .
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Classical probability
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Classical probability

" In classical probability, it is assumed that all outcomes in the sample space are equally
likely to occur.

" Consider 𝑁 is a natural number, and 𝛺 = {1, . . . , 𝑁}, and ℱ = 2𝛺 is the power set of 𝛺.

" Key assumption: Assume that

ℙ({1}) = ℙ({2}) = · · · = ℙ({𝑁}).

" Then, by axioms of probability, ℙ({𝑖}) = 1/𝑁 for each 1 ! 𝑖 ! 𝑁 (why?).

" For any 𝐸 ∈ ℱ,

ℙ(𝐸) = # of elements in 𝐸

𝑁
=

|𝐸 |
𝑁

.

" Here, |𝐸 | means the number of elements in 𝐸.
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R codes

" The experiments can be done using numerical methods.

" In this course, we illustrate the methods using R.

" If we want to toss a coin once or 10 times:
Omega <- c("head","tail")
sample(x=Omega,size= 1,replace=TRUE)
[1] "tail"
sample(x=Omega,size=10,replace=TRUE) # why replace should be true?
[1] "head" "tail" "head" "tail" "head" "tail" "head" "tail"
[9] "tail" "head"

" Whether your result is as same as mine?

" Use the set.seed() function.
set.seed(1) # you can change 1 to your favorate number
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Examples

Example 9 (Dice)

If two dice are rolled, what is the probability that the sum of the upturned faces
will equal 7?

Solution.

The sample space is 𝛺 = {(𝑖, 𝑗) : 1 ! 𝑖, 𝑗 ! 6}. It follows that 𝑁 = 36. Let ℱ be the power
set of 𝛺. Let 𝐸 = {the sum of the upturned faces equals to 7}, then

𝐸 = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)},

implying that |𝐸 | = 6 and thus ℙ(𝐸) = 6
36 =

1
6 ≈ 0.1667. "
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Examples

" We can estimate this probability by using repeated experiments.

" Suppose we roll two dice, and the sum is 3 + 5 = 8:
sample(x=1:6,size=2,replace=TRUE)
[1] 3 5

" We can repeat this experiments for 100 times, and count the numbers that the sum is 7:
dicesum <- numeric(100)
for (i in 1:100){

dicesum[i] <- sum(sample(x=1:6,size=2,replace=TRUE))
}
sum(dicesum==7)
[1] 16

" Then, the probability can be estimated by 16/100 = 0.16.
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Examples

Example 10 (Balls)

If 3 balls are “randomly drawn”from a bowl containing 6 white and 5 black balls,
what is the probability that one of the balls is white and the other two black?
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Examples

Solution.
Regard the outcome of the experiment as the unordered set of drawn balls. Then, 𝑁 =(11

3
)
= 165. Let 𝐸 denote the event that one of the balls is white and the other two black:

𝐸 = {one white and two black balls are selected},

then the number of elements in 𝐸 is

|𝐸 | =
(6
1

) (5
2

)
= 60.

If all outcomes are assumed equally likely, then, the desired probability is

ℙ(𝐸) = |𝐸 |
𝑁

=
60
165 =

4
11 ≈ 0.3636. "
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Examples

" Define all the balls in the bowl:
balls <- c(rep("White",6), rep("Black",5))

" Draw 3 balls without replacement:
sample(x=balls,size=3,replace=FALSE)
[1] "White" "Black" "White"

" Count the number of white balls:
sam <- sample(x=balls,size=3,replace=FALSE)
sum(sam=="White")
[1] 2
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Examples

" Therefore, we can design our codes as follows:
M <- 10000
whitenum <- numeric(M)
for (i in 1:M) {

sam <- sample(x=balls,size=3,replace=FALSE)
whitenum[i] <- sum(sam=="White")

}
sum(whitenum==1)/M
[1] 0.3638
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Examples

Example 11 (Balls selection)

An urn contains 𝑛 balls, one of which is
special. If 𝑘 of these balls are withdrawn
one at a time, with each selection being
equally likely to be any of the balls that
remain at the time, what is the probabil-
ity that the special ball is chosen?

𝑛 balls with 1 special

43



Examples

Solution.
Since all of the balls are treated in an identical manner, it follows that the set of 𝑘 balls
selected is equally likely to be any of the

(𝑛
𝑘

)
sets of 𝑘 balls. Therefore,

ℙ{special ball is selected} =
(1
1
) (𝑛−1

𝑘−1
)

(𝑛
𝑘

) =
𝑘

𝑛
. "
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Axioms of classical probability

Can we give some general properties for probability?
In classical probability, suppose that the sample space is 𝛺 = {𝜔1, . . . ,𝜔𝑁 }. We have the
following proposition:

Proposition 12 (Counting formula)

For any disjoint 𝐴, 𝐵 ⊂ 𝛺,

|𝐴 ∪ 𝐵| = |𝐴| + |𝐵|.

As a consequence,

ℙ(𝐴 ∪ 𝐵) = ℙ(𝐴) + ℙ(𝐵).
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Finite additivity

Proposition 13 (Finite additivity)

Let 𝐴1, 𝐴2, . . . , 𝐴𝑛 be 𝑛 disjoint events, then

ℙ
( 𝑛⋃
𝑖=1

𝐴𝑖

)
=

𝑛∑
𝑖=1

ℙ(𝐴𝑖).
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Normalization

The sample space 𝛺 itself is also an event, which is called the certain event (必然事件).

Proposition 14 (Normalization)

We have

ℙ(𝛺) = 1.
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Nonnegativity

Proposition 15

For any 𝐴 ⊂ 𝛺,

ℙ(𝐴) # 0.
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Some basic corollaries

Corollary 16

Based on Propositions 13, 14 and 15, We have the following results:
(a) ℙ(𝐴𝑐) = 1 − ℙ(𝐴).

(b) For any 𝐴 and 𝐵, ℙ(𝐴 ∪ 𝐵) = ℙ(𝐴) + ℙ(𝐵) − ℙ(𝐴 ∩ 𝐵) ! ℙ(𝐴) + ℙ(𝐵).

(c) For any 𝐴 and 𝐵, ℙ(𝐴 ∩ 𝐵) + ℙ(𝐴 \ 𝐵) = ℙ(𝐴).

(d) If 𝐵 ⊂ 𝐴, then ℙ(𝐴 \ 𝐵) = ℙ(𝐴) − ℙ(𝐵) # 0.
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The inclusive-exclusive property

Corollary 17 (The inclusive-exclusive property)

For any 𝐸1, . . . , 𝐸𝑛 ⊂ 𝛺,

ℙ(𝐸1 ∪ 𝐸2 ∪ · · · ∪ 𝐸𝑛)

=
𝑛∑
𝑖=1

ℙ(𝐸𝑖) + · · · + (−1)𝑟+1 ∑
1!𝑖1<𝑖2<· · ·<𝑖𝑟!𝑛

ℙ(𝐸𝑖1 ∩ 𝐸𝑖2 ∩ · · · ∩ 𝐸𝑖𝑟 )

+ · · · + (−1)𝑛+1 ℙ(𝐸1 ∩ · · · ∩ 𝐸𝑛).
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Examples

Example 18 (Ball replacement)

An urn contains 𝑛 − 1 black balls and 1
red ball. At each time, a ball is randomly
drawn from the urn and replaced with
a black ball. What is the probability of
drawing a black ball on the 𝑘th draw?

𝑛 − 1 black balls and 1 red ball
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Solution.

Let 𝐴 be the event that a black ball is drawn on the 𝑘th draw, and it follows that 𝐴𝑐 is the
event that the red ball is draw on the 𝑘th draw. Note that there is only one red ball in the
urn, and thus

𝐴𝑐 = {black balls on the first 𝑘 − 1th draws, and the red ball on the 𝑘th draw.}

Therefore,

ℙ(𝐴𝑐) = (𝑛 − 1)𝑘−1 · 1
𝑛𝑘

=
1
𝑛

(
1 − 1

𝑛

)𝑘−1
,

and by (a) in Corollary 16,

ℙ(𝐴) = 1 − ℙ(𝐴𝑐) = 1 − 1
𝑛

(
1 − 1

𝑛

)𝑘−1
. "
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Examples

Example 19 (Poker)

A deck of poker cards consists 52 cards (without Jokers). A poker hand consists of
5 cards. If the cards have distinct consecutive values and are not all of the same
suit, we say that the hand is a straight.

For instance, a poker hand consisting of the following are all straights:

5♠ 6! 7♠ 8" 9♣

A♣ 2! 3♠ 4" 5"

10♠ J♠ Q♠ K♠ A"

What is the probability that one is dealt a straight?
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Solution.
The total number of possible poker hands is

𝑁 =
(52

5

)
= 2, 598, 960.

Let 𝐴 be the event that the five cards have distinct consecutive values, and 𝐵 be the event
that the cards are all of the same suit. Let 𝐸 be the event that the hand of cards is a
straight. Then,

𝐸 = 𝐴 ∩ 𝐵𝑐.

Then, by Proposition (e),

ℙ(𝐸) = ℙ(𝐴) − ℙ(𝐴 ∩ 𝐵).
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Note that

ℙ(𝐴) = |𝐴|
𝑁

=
10 × 45

𝑁
, ℙ(𝐴 ∩ 𝐵) = |𝐴 ∩ 𝐵|

𝑁
=

10 × 4
𝑁

,

then,

ℙ(𝐸) = 10, 200
2, 598, 960 ≈ 0.0039. "

55



Examples

Example 20 (Dou dizhu, 斗地主)

Dou dizhu (fighting the landlord, 斗地主)
is one of the most popular card games
played in China. It is played among
three people with one pack of cards, in-
cluding the two differentiated jokers. A
shuffled pack of 54 cards is dealt to three
players, Each “peasant (农民)” is dealt
17 cards, while the “landlord (地主)” is
dealt 20 cards.

A Rocket (火箭) is the Colored Joker (大
王) and black-and-white Joker (小王),

and a bomb (炸弹) is 4 cards of the same
rank.

What is the probability that the landlord
receive a rocket but no bombs?
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Examples

Example 21 (The matching problem)

Suppose that each of 𝑛 men at a party throws his hat into the center of the room.
The hats are first mixed up, and then each man randomly selects a hat. What is
the probability that none of the men selects his own hat?
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Examples

Solution.

We first calculate the complementary probability of at least one man’s selecting his own
hat. Denote by 𝐸𝑖 the event that the 𝑖th selects his own hat, where 𝑖 = 1, . . . , 𝑛. Then, by
the inclusion-exclusion property,

ℙ(𝐸1 ∪ 𝐸2 ∪ · · · ∪ 𝐸𝑛)

=
𝑛∑
𝑖=1

ℙ(𝐸𝑖) + · · · + (−1)𝑟+1 ∑
1!𝑖1<𝑖2<· · ·<𝑖𝑟!𝑛

ℙ(𝐸𝑖1 ∩ 𝐸𝑖2 ∩ · · · ∩ 𝐸𝑖𝑟 )

+ · · · + (−1)𝑛+1 ℙ(𝐸1 ∩ · · · ∩ 𝐸𝑛).
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Examples

For any 𝑟, we have ℙ(𝐸𝑖1∩· · ·∩𝐸𝑖𝑟 ) =
(𝑛−𝑟)!

𝑛! ,
∑

1!𝑖1<· · ·<𝑖𝑟!𝑛 ℙ(𝐸𝑖1∩· · ·∩𝐸𝑖𝑟 ) =
(𝑛
𝑟

) (𝑛−𝑟)!
𝑛! = 1

𝑟! .
Therefore,

ℙ

(
𝑛⋃
𝑖=1

𝐸𝑖

)
= 1 − 1

2! +
1
3! + · · · + (−1)𝑛+1 1

𝑛! .

Let 𝐸 = {none of the men selects his own hat}, and it follows that 𝐸 =
(⋃𝑛

𝑖=1 𝐸𝑖
) 𝑐, which

gives

ℙ(𝐸) = 1 − 1 + 1
2! + · · · + (−1)𝑛 1

𝑛! → 𝑒−1 if 𝑛 → ∞. "
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Probability on a general set
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Example 22

Let 𝛺 be a countable set: 𝛺 = {𝜔𝑗, 𝑗 ∈ 𝐽}, where 𝐽 is the collection of finite or
countable index set. Letℱ be the power set of 𝛺. Choose any sequence of numbers
{𝑝𝑗, 𝑗 ∈ 𝐽} satisfying that

∀ 𝑗 ∈ 𝐽 : 𝑝𝑗 # 0;
∑
𝑗#1

𝑝𝑗 = 1.

Define a set function ℙ : ℱ → [0, 1] as ∀𝐸 ∈ ℱ : ℙ(𝐸) = ∑
𝜔𝑗∈𝐸

𝑝𝑗. Then, (𝛺,ℱ,ℙ) is a
probability space.

Remark
In words, we assign 𝑝𝑗 as the value of probability of the singleton {𝜔𝑗}, and for an arbitrary
set 𝐸 of𝜔𝑗’s we assign a probability the sum of all the probabilities assigned to its elements.
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A measure of belief

Example 23 (Probability in real life)

(i) It is 40% probable that 吴承恩 actually wrote the novel 《西游记》.

(ii) The probability that Oswald acted alone in assassinating Kennedy is 0.8.

(iii) You are 90% sure that you will receive an A+ as long as you work hard in this
course.

• Themost simple and natural interpretation is that the probabilities referred to are mea-
sures of the individual’s degree of belief in the statements that he or she is making.

• Whether we interpret probability as a measure of belief or as a long-run frequency of
occurrence, its mathematical properties remain unchanged.
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Examples

Example 24

Suppose that, in a 7-horse race, you feel
that
" each of the first 2 horses has a 20

percent chance of winning,

" horses 3 and 4 each have a 15 per-
cent chance, and

" the remaining 3 horses have a 10
percent chance each.

Would it be better for you to wager at
even money that the winner will be one
of the first three horses or to wager,
again at even money, that the winner

will be one of the horses 1, 5, 6, and
7?
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Proof.

The sample space is 𝛺 = {1, 2, . . . , 7}, ℱ = 2𝛺, and ℙ : ℱ → [0, 1] is defined as

ℙ({1}) = ℙ({2}) = 0.2,
ℙ({3}) = ℙ({4}) = 0.15,
ℙ({5}) = ℙ({6}) = ℙ({7}) = 0.1.

It can be shown that (𝛺,ℱ,ℙ) is a probability space.
Let 𝐸 be the event that one of the first three horses wins, and 𝐹 that one of the horses
1, 5, 6, 7 wins: 𝐸 = {1, 2, 3}, 𝐹 = {1, 5, 6, 7}. Then,

ℙ(𝐸) = ℙ({1} ∪ {2} ∪ {3}) = ℙ({1}) + ℙ({2}) + ℙ({3}) = 0.55,
ℙ(𝐹) = ℙ({1} ∪ {5} ∪ {6} ∪ {7}) = 0.5.

Hence, it is better to wager that the winner is among the first 3 horses. "
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Examples

Example 25

A survey of college students asked the questions: “Are you currently in a rela-
tionship?”and “Are you involved in intercollegiate or club sports?”The survey found
that 33% were currently in a relationship, and 25% were involved in sports. 11%
responded “yes”to both.
What’s the probability that a randomly selected student either is in a relationship
or is involved in athletics?
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Proof.
Let 𝐸 be the event that a randomly selected college student is in a relationship, and 𝐹 be
the event that he/she is involved in sports. Then,

ℙ(𝐸 ∪ 𝐹) = ℙ(𝐸) + ℙ(𝐹) − ℙ(𝐸 ∩ 𝐹) = 0.33 + 0.25 − 0.11 = 0.47. "

College students

In a relationship
Involved in sports

0.33 0.25

0.11
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Probability on intervals

Let 𝒰 = (0, 1], and let 𝒞 = {(𝑎, 𝑏] : 0 < 𝑎 < 𝑏 ! 1}. Let ℬ be the minimal 𝜎-field containing
𝒞, which is also known as the Borel set. Define the Lebesgue measure 𝑚 on 𝒞 as

𝑚((𝑎, 𝑏]) = 𝑏 − 𝑎.

0 1𝑎 𝑏

Let ℬ0 be the collection of subsets of 𝒰 each of which is the union of a countable number of
members of 𝒞, say, a typical event 𝐵 in ℬ0 is of the form

𝐵 =
∞⋃
𝑗=1

(𝑎𝑗, 𝑏𝑗] 𝑎1 < 𝑏1 < 𝑎2 < 𝑏2 < · · · < 𝑎𝑛 < 𝑏𝑛 < . . .

has the probability 𝑚(𝐵) =
∞∑
𝑗=1

(𝑏𝑗 − 𝑎𝑗). Then, (𝒰,ℬ,𝑚) is a probability space.

67



Geometric Probability

Definition 26 (Geometric proabilility)
Geometric Probability involves geometric measures such as length, area, and volume to
describe the probability of an event.

Equally likely probability
If all outcomes are equally likely, the geometric probability of an event 𝐴 is given by:

ℙ(𝐴) = Geometric measure of 𝐴
Geometric measure of the sample space 𝛺
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Examples

Example 27 (Dart game)

Consider a dart game where darts are thrown at a square dartboard with a circle
inscribed in it. What is the geometric probability that a dart lands inside the circle?

Solution.
" Assume that the radius is 1.

" The area of the square (sample space) is 2 × 2 = 4 square units.

" The area of the inscribed circle (event 𝐴) is 𝜋 × 12 = 𝜋 square units.

" Therefore, the geometric probability that a dart lands inside the circle is 𝜋
4 .

"
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Examples

Example 28

In a random experiment of drawing a point from a line segment of length 1, what
is the geometric probability that the drawn point lies in the middle third of the line
segment?

Solution.

" The length of the line segment (sample space) is 1 unit.

" The length of the middle third of the line segment (event 𝐴) is 1
3 unit.

" Therefore, the geometric probability that the drawn point lies in the middle third of
the line segment is 1/3

1 = 1
3 .

"
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Examples

Example 29 (Waiting time)

Suppose that a traffic light has a period of 1
minute, where the red light lasts for 30
seconds, the green light lasts for 25 seconds,
and the yellow light lasts for 5 seconds. If
you arrive at the traffic light at a random
time, what is the probability that the light is
green?

Solution.

Let 𝛺 = (0, 1], let ℱ be the Borel set of 𝛺 and ℙ be the Lebesgue measure. Let
𝐸 be the event that the light is green, then 𝐸 = {𝑡 : 1/2 < 𝑡 ! 11/12}, and thus
ℙ(𝐸) = 11/12 − 1/2 = 5/12. "

0 30s 55s 1min
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Continuous events on higher dimensions

Example 30 (Romeo and Juliet)

Romeo and Juliet have a date at a given
time, and each will arrive at the meet-
ing place with a delay between 0 and 1
hour, will all pairs of delays being equally
likely. The first to arrive will wait for 15
minutes and will leave if the other has
not yet arrived. What is the probability
that they will meet?
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Solution.

Let 𝛺 = (0, 1]×(0, 1], and ℱ be the Borel 𝜎-
field that is generated by (𝑎1, 𝑏1] × (𝑎2, 𝑏2].
For any 𝐴 ∈ ℱ, let ℙ(𝐴) be the Lebesgue
measure (or, intuitively, the area) of 𝐴. Let
𝐸 be the event that Romeo and Juliet meet,
then

𝐸 = {(𝑥, 𝑦) : |𝑥 − 𝑦 | ! 1/4, 0 ! 𝑥, 𝑦 ! 1}.
Then,

ℙ(𝐸) = area of 𝐸 =
7
16 . "

𝑥

𝑦

1

1

1/4

1/4

𝐸
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Continuous event with different weights

Suppose that the sample space is an
interval, say 𝛺 = (0, 1]. On this interval we
define a weighting function 𝑓 (𝑥) where 𝑓 (𝑥0)
specifies the weight for 𝑥0. Because 𝛺 is an
interval, events defined on this 𝛺 must also
be intervals. For example, for an event
𝐸 ⊂ (0, 1], the probability of 𝐸 is
ℙ(𝐸) =

∫
𝐸
𝑓 (𝑥)𝑑𝑥.

𝛺

∫
𝐸
𝑓 (𝑥)𝑑𝑥

0 1𝐸
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An example: Bertrand’s paradox (伯特兰悖论)

Example 31 (Bertrand’s paradox)

Consider a circle with radius 1. What is the probability that a randomly chosen
chord of the circle is greater than the side of the inscribed equilateral triangle of
the circle?

Figure: Joseph Bertrand (1822-1900) and a randomly chosen chord
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Solution 1.
We take a radius of the circle such as 𝑂𝐴, and we chose a point 𝐶 on the radius, with all
points being equally likely. We then draw the chord through 𝐶 that is orthogonal to 𝑂𝐴.
For elementary geometry, 𝑂𝐴 intersects the triangle at the midpoint of 𝑂𝐴, say 𝐵.

Let 𝛺 = [0, 1] be the points on 𝑂𝐴, where
𝑥 ∈ 𝛺 represents the point 𝐶 such that
𝑂𝐶 = 𝑥, ℱ = ℬ( [0, 1]), and ℙ be the
Lebesgue measure. Let 𝐸 be the event that
the chord is greater than the side of the tri-
angle, then

𝐸 = {𝑥 : 0 ! 𝑥 !
1
2 }.

Then,

ℙ(𝐸) = 1
2 . "

𝑂

𝐴

𝐶

𝐵
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Solution 2.
We take a point on the circle, such as the vertex 𝑉 , we draw the tangent to the circle
through 𝑉 , and draw a line through 𝑉 that forms a random angle 𝛩 with the tangent.

Let 𝛺 = (0,𝜋], where 𝛼 ∈ 𝛺 represents the
chord whose angle equals to 𝛼. Let ℱ be
the Borel 𝜎-field of 𝛺, and let

ℙ((𝛼, 𝛽]) = 𝛽 − 𝛼

𝜋
.

Let 𝐸 be the event that the chord is longer
than the side of the inscribed equilateral tri-

angle, then 𝐸 = {𝛼 : 𝜋

3 ! 𝛼 !
2𝜋
3 }. There-

fore,

ℙ(𝐸) = 1
3 . "

𝛩

𝑉
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What shall we do?

" We need to specify unambiguously a probability model.

" The answer depends on the precise meaning of “randomly chosen”. The two methods
lead to contradictory results.

" The model should reflect the real world.

" “Simple” but “incorrect” models, or “Correct” but “non-tractable” models? That is a
trade-off.

" Sometimes, a model is chosen on the basic of historical data or past outcomes of
similar experiments, using statistical inference methods.
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Problems

1. In geometric probability, the sample space is a geometric figure and the probability of an
event is defined as the ratio of the areas (or volumes, or lengths, depending on the
context) of two regions.
A. True

B. False
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Problems

2. The probability of an event is always equal to the ratio of the number of favorable
outcomes to the total number of outcomes.
A. True

B. False
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Problems

3. In general probability, not all outcomes have to be equally likely.
A. True

B. False
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Problems

4. In a dart game where darts are thrown at a square dartboard with a circle inscribed in it,
what is the geometric probability that a dart lands inside the circle?

A. 1
4

B. 𝜋
4

C. 1
𝜋

D. 4
𝜋

20
1

18
4

1361015
2

17
3
19
7
16

8 11 14 9
12

5
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Problems

5. In a random experiment of drawing a point from a line segment of length 1, what is the
geometric probability that the drawn point lies in the middle third of the line segment?
A. 1

3

B. 1
2

C. 2
3

D. 1

83



Axioms of Probability
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Events and probability: Still some gaps

" Mathematically, probability is a function that assigns probabilities to events.

" We wish to find a good collection of events, on which we can properly define
probabilities.

The fundamental theory of modern probability
theory was built by the Soviet mathematician
Kolmogorov (【前苏联】柯尔莫戈洛夫).

Andrey Kolmogorov (1903–1987).
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Collection of events

Let 𝒜 be a nonempty collection of events of 𝛺, and it may have certain “closure properties”:

(0) 𝛺 ∈ 𝒜.

(i) 𝐸 ∈ 𝒜 =⇒ 𝐸𝑐 ∈ 𝒜.

(ii) 𝐸1 ∈ 𝒜, 𝐸2 ∈ 𝒜 =⇒ 𝐸1 ∪ 𝐸2 ∈ 𝒜.

(iii) 𝐸1 ∈ 𝒜, 𝐸2 ∈ 𝒜 =⇒ 𝐸1 ∩ 𝐸2 ∈ 𝒜.

(iv) ∀ 𝑛 # 2:
𝐸 𝑗 ∈ 𝒜, 1 ! 𝑗 ! 𝑛 =⇒ ⋃𝑛

𝑗=1 𝐸 𝑗 ∈ 𝒜.

(v) ∀ 𝑛 # 2:
𝐸 𝑗 ∈ 𝒜, 1 ! 𝑗 ! 𝑛 =⇒ ⋂𝑛

𝑗=1 𝐸 𝑗 ∈ 𝒜.

(vi) 𝐸 𝑗 ∈ 𝒜; 𝐸 𝑗 ⊂ 𝐸 𝑗+1, 1 ! 𝑗 < ∞ =⇒ ⋃∞
𝑗=1 𝐸 𝑗 ∈

𝒜.

(vii) 𝐸 𝑗 ∈ 𝒜; 𝐸 𝑗 ⊃ 𝐸 𝑗+1, 1 ! 𝑗 < ∞ =⇒ ⋂∞
𝑗=1 𝐸 𝑗 ∈

𝒜.

(viii) 𝐸 𝑗 ∈ 𝒜, 1 ! 𝑗 < ∞ =⇒ ⋃∞
𝑗=1 𝐸 𝑗 ∈ 𝒜.

(ix) 𝐸 𝑗 ∈ 𝒜, 1 ! 𝑗 < ∞ =⇒ ⋂∞
𝑗=1 𝐸 𝑗 ∈ 𝒜.

(x) 𝐸1, 𝐸2 ∈ 𝒜, 𝐸1 ⊂ 𝐸2 =⇒ 𝐸2 \ 𝐸1 ∈ 𝒜.
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Fields

Definition 32 (Fields and sigma fields)
A collection ℱ of subsets of 𝛺 is called
(i) a field iff (0), (i) and (ii) hold.

(ii) a 𝜎-field (sigma field, sigma field) iff (0), (i) and (viii) hold.

Remark
(a) The condition (0) ensures that a field is not nonempty.

(b) A field is also called an algebra, and a 𝜎-field is also known as a 𝜎-algebra.
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More fields

Definition 33
(i) The collection of all subsets of 𝛺 is a 𝜎-field called the power set, denoted by 2𝛺.

(ii) The collection of the two sets {∅,𝛺} is a 𝜎-field called the trivial sigma field.
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Examples of Sigma-Fields

Example 34 (Trivial Sigma-Field)

Given a sample space 𝛺 = {𝑎, 𝑏, 𝑐}, a trivial sigma-field is ℱ = {∅,𝛺} = {∅, {𝑎, 𝑏, 𝑐}}.
It contains only the empty set and the entire sample space.

Example 35 (Sigma-Field Generated by a Single Event)

Given a sample space 𝛺 = {𝑎, 𝑏, 𝑐} and an event 𝐴 = {𝑎}, the sigma-field generated
by 𝐴 is ℱ = {∅, 𝐴, 𝐴𝑐,𝛺} = {∅, {𝑎}, {𝑏, 𝑐}, {𝑎, 𝑏, 𝑐}}.

89



Examples of Sigma-Fields (cont.)

Example 36 (Sigma-Field Generated by Two Events)

Given a sample space 𝑆 = {𝑎, 𝑏, 𝑐}, and two events 𝐴 = {𝑎} and 𝐵 = {𝑏}, the sigma-
field generated by 𝐴 and 𝐵 is ℱ = {∅, 𝐴, 𝐵, 𝐴 ∪ 𝐵, 𝐴𝑐, 𝐵𝑐, (𝐴 ∪ 𝐵)𝑐, 𝑆}.

Example 37 (The Power Set)

Given a sample space 𝑆 = {𝑎, 𝑏, 𝑐}, the power set of 𝑆 is a sigma-field, ℱ =
{∅, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐}, {𝑎, 𝑏, 𝑐}}.
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Sample space and Events, revisited

Actually, not all subsets of 𝛺 can be given a probability. To define the axioms of probability,
we first define the events, at an axiom view.

Definition 38
Let𝛺 is a sample space, andℱ is a 𝜎-field of𝛺. We say 𝐸 is an event if 𝐸 ∈ ℱ. The 𝜎-field
is also called an event space. The pair (𝛺,ℱ) is also called a sample space somewhere
else.
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Axioms of Probability

Definition 39
We shall assume that, for each event 𝐸 in the sample space (𝛺,ℱ), there exists a value
ℙ(𝐸), referred to as the probability of 𝐸, which satisfies the following axioms:
(i) Non-negativity: ℙ(𝐸) # 0 for all 𝐸 ∈ ℱ.

(ii) Normalization: ℙ(𝛺) = 1.

(iii) 𝜎-additivity: For any sequence of mutually exclusive events 𝐸1, 𝐸2, . . . ,

ℙ

(
∞⋃
𝑖=1

𝐸𝑖

)
=

∞∑
𝑖=1

ℙ(𝐸𝑖).

The triple (𝛺,ℱ,ℙ) is said to be a probability space.
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Why these three axioms?

(i) Axiom I (Non-negativity) ensures that probability is never negative.

(ii) Axiom II (Normalization) ensures that probability is never greater than 1.

(iii) Axiom III (Additivity) allows us to add probabilities when two events do not overlap.
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Properties of probability: I

These 3 axioms imply the following consequences.

Proposition 40

(a) ℙ(∅) = 0.

(b) Finite additivity: For any finite sequence of mutually exclusive events 𝐸1, . . . , 𝐸𝑛,

ℙ

(
𝑛⋃
𝑖=1

𝐸𝑖

)
=

𝑛∑
𝑖=1

ℙ(𝐸𝑖).

(c) ℙ(𝐸𝑐) = 1 − ℙ(𝐸) for all 𝐸 ∈ ℱ.

(d) ℙ(𝐸) ! 1 for all 𝐸 ∈ ℱ.

(e) If 𝐸 ⊂ 𝐹, then ℙ(𝐸) = ℙ(𝐹) − 𝑃(𝐹 \ 𝐸) ! ℙ(𝐹).
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Proof of (a).

Consider a sequence of events 𝐸1, 𝐸2, . . . , where 𝐸1 = 𝛺, and 𝐸𝑖 = ∅ for 𝑖 # 2. Then, these
events are mutually exclusive and 𝛺 = ∪𝐸𝑖. Therefore, by Axiom (iii),

ℙ(𝛺) =
∞∑
𝑖=1

ℙ(𝐸𝑖) = ℙ(𝛺) +
∞∑
𝑖=2

ℙ(∅),

which implies that ℙ(∅) = 0. "

Proof of (b).

Consider 𝐸1, 𝐸2, . . . are a sequence of mutually exclusive events with 𝐸 𝑗 = ∅ for 𝑗 > 𝑛, then

ℙ

(
𝑛⋃
𝑖=1

𝐸𝑖

)
= ℙ

(
∞⋃
𝑖=1

𝐸𝑖

)
=

∞∑
𝑖=1

ℙ(𝐸𝑖) =
𝑛∑
𝑖=1

ℙ(𝐸𝑖) + 0. "

95



Proof of (c).

Let 𝐸1 = 𝐸 and 𝐸2 = 𝐸𝑐. By (b) with 𝑛 = 2,

1 = ℙ(𝛺) = ℙ(𝐸 ∪ 𝐸𝑐) = ℙ(𝐸) + 𝑃(𝐸𝑐). "

Proof of (d).

Since ℙ(𝐸) = 1 − ℙ(𝐸𝑐) and ℙ(𝐸𝑐) # 0, then

ℙ(𝐸) ! 1. "

Proof of (e).

Since 𝐹 = 𝐸 ∪ (𝐹 \ 𝐸), and 𝐸 and 𝐹 \ 𝐸 are mutually exclusive, then by (b),

ℙ(𝐹) = ℙ(𝐸) + ℙ(𝐹 \ 𝐸) # ℙ(𝐸). "
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Proposition of probability: II

Proposition (Cont’d)
(f) General addition rule: For any 𝐸, 𝐹 ∈ ℱ,

ℙ(𝐸 ∪ 𝐹) = ℙ(𝐸) + ℙ(𝐹) − ℙ(𝐸 ∩ 𝐹).

(g) The inclusion–exclusion identity: For any 𝐸1, 𝐸2, . . . , 𝐸𝑛 ∈ ℱ (not necessarily mutu-
ally exclusive),

ℙ(𝐸1 ∪ 𝐸2 ∪ · · · ∪ 𝐸𝑛)

=
𝑛∑
𝑖=1

ℙ(𝐸𝑖) −
∑

1!𝑖1<𝑖2!𝑛
ℙ(𝐸𝑖1 ∩ 𝐸𝑖2) + . . .

+ (−1)𝑟+1 ∑
1!𝑖1<𝑖2<· · ·<𝑖𝑟!𝑛

ℙ(𝐸𝑖1 ∩ 𝐸𝑖2 ∩ · · · ∩ 𝐸𝑖𝑟 ) + . . .

+ (−1)𝑛+1 ℙ(𝐸1 ∩ · · · ∩ 𝐸𝑛).
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Proof of (f).

Note that 𝐸 ∪ 𝐹 = 𝐸 ∪ (𝐹 \ 𝐸), then by (e),

ℙ(𝐸 ∪ 𝐹) = ℙ(𝐸) + ℙ(𝐹 \ 𝐸),

similarly, 𝐹 = (𝐹 \ 𝐸) ∪ (𝐸 ∩ 𝐹), by (e) again,

ℙ(𝐹) = ℙ(𝐸 ∩ 𝐹) + ℙ(𝐹 \ 𝐸) =⇒ ℙ(𝐹 \ 𝐸) = ℙ(𝐹) − ℙ(𝐸 ∩ 𝐹),

then

ℙ(𝐸 ∪ 𝐹) = ℙ(𝐸) + ℙ(𝐹) − ℙ(𝐸 ∩ 𝐹). "

Proof of (g).

Can be proved by (f) and recursive arguments. "

98



Properties of probability: III

Proposition (Cont’d)
(h) Boole’s inequality: For any 𝐸1, 𝐸2, . . . ∈ ℱ (not necessarily mutually exclusive),

∞∑
𝑖=1

ℙ(𝐸𝑖) −
∑
𝑖< 𝑗

ℙ(𝐸𝑖𝐸 𝑗) ! ℙ

(
∞⋃
𝑖=1

𝐸𝑖

)
!

∞∑
𝑖=1

ℙ(𝐸𝑖).
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Monotone property
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Increasing events

In the context of probability, increasing events are events that become more likely to occur
as additional information is given.

Definition 41
A sequence of events {𝐸𝑛, 𝑛 # 1} is said to be an increasing sequence if

𝐸1 ⊂ 𝐸2 ⊂ · · · ⊂ 𝐸𝑛 ⊂ 𝐸𝑛+1 ⊂ . . . .

Example 42

An example of increasing events can be rolling a fair six-sided die:
" Event 𝐸1: The outcome is less than or equal to 3.

" Event 𝐸2: The outcome is less than or equal to 4.

" Event 𝐸3: The outcome is less than or equal to 5.
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Limit of increasing events

Definition 43
If {𝐸𝑛, 𝑛 # 1} is an increasing sequence of events, then lim

𝑛→∞
𝐸𝑛 is defined by

lim
𝑛→∞

𝐸𝑛 =
∞⋃
𝑖=1

𝐸𝑖.

The following proposition is the so called monotone property:

Proposition 44

If {𝐸𝑛, 𝑛 # 1} is an increasing sequence of events with 𝐸∞ = lim
𝑛→∞

𝐸𝑛, then

ℙ
(
𝐸∞

)
= lim

𝑛→∞
ℙ(𝐸𝑛).
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Proof.
Define the events 𝐹𝑛 for 𝑛 # 1 by

𝐹1 = 𝐸1, 𝐹2 = 𝐸2 \ 𝐸1, . . . , 𝐹𝑛 = 𝐸𝑛 \ 𝐸𝑛−1, . . . .

In words, 𝐹𝑛 consists of those outcomes in 𝐸𝑛 which are not in any of the earlier 𝐸 𝑗, 𝑗 < 𝑛.
It is easy to verify that 𝐹𝑛 are mutually exclusive events such that

𝑛⋃
𝑖=1

𝐹𝑖 =
𝑛⋃
𝑖=1

𝐸𝑖 = 𝐸𝑛, for all 𝑛 # 1 and 𝑛 = ∞.

Then,

ℙ(𝐸∞) = ℙ

(
∞⋃
𝑖=1

𝐹𝑖

)
=

∞∑
𝑖=1

ℙ(𝐹𝑖) = lim
𝑛→∞

𝑛∑
𝑖=1

ℙ(𝐹𝑖) = lim
𝑛→∞

ℙ
( 𝑛⋃
𝑖=1

𝐹𝑖

)

= lim
𝑛→∞

ℙ(𝐸𝑛). "
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𝐹1
𝐹2

𝐹3 𝐹4

104



Decreasing events

Definition 45
A sequence {𝐸𝑛, 𝑛 # 1} is said to be a decreasing seqeunce if 𝐸1 ⊃ 𝐸2 ⊃ . . . . Its limit is
defined by

lim
𝑛→∞

𝐸𝑛 =
∞⋂
𝑖=1

𝐸𝑛.

Proposition 46

If {𝐸𝑛, 𝑛 # 1} is decreasing with 𝐸∞ = lim
𝑛→∞

𝐸𝑛, then

ℙ(𝐸∞) = lim
𝑛→∞

ℙ(𝐸𝑛).
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Axioms of continuity

Proposition 47 (Axioms of continuity)

If 𝐸𝑛 ↓ ∅, then ℙ(𝐸𝑛) → 0 as 𝑛 → ∞.

Remark
This proposition is a special case of the monotone property.

Theorem 48
The axioms of finite additivity and continuity together are equivalent to the axiom of
countable additivity.

Finite Additivity & Continuity Countable Additivity
equivalent
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Proof.

Step 1. Proof of “Countable additivity” =⇒ “Finite Additivity & Continuity”. Proved.

Step 2. Proof of “Finite Additivity & Continuity” =⇒ “Countable additivity”. Let {𝐸𝑛, 𝑛 # 1}
be pairwise disjoint, then 𝐹𝑛 := ∪∞

𝑘=𝑛+1𝐸𝑘 ↓ ∅. By the “Continuity” property, lim𝑛→∞ ℙ(𝐹𝑛) =
0. If “Finite additivity” is assumed, then

1 # ℙ
( ∞⋃
𝑖=1

𝐸𝑖

)
= ℙ

( 𝑛⋃
𝑖=1

𝐸𝑖

)
+ ℙ(𝐹𝑛) =

𝑛∑
𝑖=1

ℙ(𝐸𝑖) + ℙ(𝐹𝑛).

Let 𝑎𝑛 =
∑𝑛

𝑖=1 ℙ(𝐸𝑖). It follows that 𝑎𝑛 ↑ and bounded by 1 (why?), and thus the limit
lim𝑛→∞ 𝑎𝑛 exists. Taking limits on both sides yields

ℙ
( ∞⋃
𝑖=1

𝐸𝑖

)
= lim

𝑛→∞
𝑎𝑛 + lim

𝑛→∞
ℙ(𝐹𝑛) =

∞∑
𝑖=1

ℙ(𝐸𝑖). "
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Example: Tossing a Coin

Example 49 (Problem Statement)

Consider an experiment where a fair coin is tossed until the first head appears. Let
𝐴𝑖 be the event that the first head appears on or before the 𝑖-th toss. As 𝑖 increases,
𝐴𝑖 forms an increasing sequence of events.

Application of Continuity Property
According to the first continuity property, we can say that the probability of getting a head
eventually is the limit of the probabilities of 𝐴𝑖 as 𝑖 goes to infinity, i.e.,

ℙ
( ∞⋃
𝑖=1

𝐴𝑖

)
= lim

𝑖→∞
ℙ(𝐴𝑖) = lim

𝑖→∞
(1 − 2−𝑖) = 1.
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Probability zero sets

" ∅ has probability 0, but the inverse is not correct:

" Not all of probability zero sets are empty.

" For example, in the probability space (𝒰,ℬ,𝑚),

𝑚({0.5}) = 𝑚

( ∞⋂
𝑛=1

(0.5 − 1
2𝑛 , 0.5]

)
= lim

𝑛→∞
𝑚((0.5 − 1

2𝑛 , 0.5]) = 0.

" Intuitively, the set {0.5} has length 0, and then the probability of {0.5} is 0.

" As a result,

𝑚( [𝑎, 𝑏]) = 𝑚((𝑎, 𝑏)),

because 𝑚({𝑎}) = 𝑚({𝑏}) = 0.
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A formal definition of probability zero sets

Definition 50
Let (𝛺,ℱ,ℙ) be a probability space. A set 𝐸 ∈ ℱ is said to have probability zero if for any
𝜀 > 0, there exists a countable number of subsets 𝐸𝑛 such that 𝐸 ⊂ ∪∞

𝑛=1𝐸𝑛, and

∞∑
𝑛=1

ℙ(𝐸𝑛) < 𝜀.

Example 51 (The rational number set has probability zero)

In the probability space (𝒰,ℬ,𝑚), let 𝐸 = ℚ ∩ (0, 1] be the collection of all rational
number in 𝒰 = (0, 1]. Then, ℙ(𝐸) = 0.
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Almost surely

When we make probabilistic claims without considering the measure zero sets, we say that
an event happens almost surely.

Definition 52 (Almost surely)
An event 𝐸 is said to hold almost surely (a.s.) if ℙ(𝐸) = 1.

Example 53 (Irrational numbers)

In the probability space (𝒰,ℬ,𝑚), let 𝐸 be the event containing all of the irrational
numbers. Then

ℙ(𝐸) = 1.

111



Problems

1. If 𝐴1 ⊆ 𝐴2 ⊆ 𝐴3 ⊆ . . . then

ℙ(
∞⋃
𝑖=1

𝐴𝑖) = inf
𝑖#1

ℙ(𝐴𝑖)

A. True

B. False
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Problems

2. If 𝐴1 ⊇ 𝐴2 ⊇ 𝐴3 ⊇ . . ., then

ℙ(
∞⋂
𝑖=1

𝐴𝑖) = lim
𝑖→∞

ℙ(𝐴𝑖)

A. True

B. False
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A course in probability theory (概率论教程): Chapter 2.

3rd edition (原书第三版),机械工业出版社

114



Further reading

[4] Dimitri P. Bertsekas and John N. Tsitsiklis.
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2nd Edition. MIT.
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