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Introduction



Limit Theorems in Probability Theory ? A3 ML,

SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

m The most important theoretical results in probability theory are limit theorems.

m Among which the most important are those classified either under the heading laws of
large numbers or under the heading central limit theorems.

m The Law of Large Numbers: As the sample size increases, the sample mean converges
to the true mean.

m Central Limit Theorem: As the sample size increases, the distribution of the sample
mean approaches a normal distribution.



Example: Tossing a Fair Coin ? A3 M1 LY
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m Toss a fair coin repeatedly, record the proportion of times it comes up heads.

m The Law of Large Numbers tells us that as the number of coin tosses increases, the
proportion of heads will approach 0.5.

m If we toss the coin a large number of times, we should expect the proportion of heads to
be very close to 0.5.



Example: Rolling a Fair Die ? A M LY
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m Roll a fair six-sided die repeatedly, record the average value of the rolls.

m The Central Limit Theorem tells us that as the number of rolls increases, the distribution
of the average values will become approximately normal.

m If we roll the die a large number of times and calculate the average value of the rolls, the
distribution of these average values will be bell-shaped, with a mean close to 3.5 and a
standard deviation that decreases as the number of rolls increases.
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Example: Measuring Heights of Students ? AWk AY

m Measure the heights of a large number of students, record the average height.

m The Central Limit Theorem tells us that as the sample size increases, the distribution of
the average heights will become approximately normal.

m If we measure the heights of a large number of students and calculate the average
height, the distribution of these average values will be bell-shaped, with a mean close to
the true average height of the population and a standard deviation that decreases as
the sample size increases.



Some important inequalities



Markov’s inequality ‘{' A3 MiLky
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Proposition 1 (Markov's inequality)

If X is a random variable that takes only
nonnegative values, then

E[X]
a

P{X > a} < for all a > 0. Figure: A. A. Markov (& /R 7T X, 1856-1922)




Proof.

Note that X is nonnegative, then,

P(X > a) = E[L1{xsq}]
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Chebyshev’s inequality ? A3 ML,
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Proposition 2

If X is a random variable with finite mean p
and variance o2, then, for any value a > 0,

2
P{x -l >a) < .
a

Figure: Chebyshev (#7115 X)

Proof.
We will apply Markovs inequality to prove it. Note that

E[(X - )?] _ Var(x)

P{IX - p| > a} = P{|X — u? > a®} < 2

a a2



Examples A3 ML,
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Example 3

Suppose that it is known that the number of items produced in a factory during a

week is a random variable with mean 50.

(a) What can be said about the probability that this week’ s production will exceed
75?

(b) If the variance of a week’ s production is known to equal 25, then what can
be said about the probability that this week’ s production will be between 40
and 607?

Solution.

Let X be the number of items produced during a weak. Then, we are going to estimate
P{X > 75} and IP{40 < X < 60}.



Examples

Solution (Contd).
(a) As X is nonnegative, by Markov's equality,

E[X] 50
P{X < =—=~0. .
{X > 75} 7 = 0.667

(b) By Chebyshev’s inequality, it follows that

X) 2
VarX) _ 25 o

P{|X - > 10} < =
{1X =50 > 10} 102 100

and therefore,

P{40 < X < 60} > 1 —0.25 = 0.75.
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Degenerate random variables ? AWk AY

Proposition 4

If Var(X) =0, then
P{X =E[X]}=1.

In other words, the only random variables having variances equal to O are those which
are constant with probability 1.



Weak law of large numbers



Convergence of a sequence of numbers ? AWk AY
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Definition 5

A sequence {a,} has the limit a, written as

lima, =a or a, —>aasn— o
n—oo

if for every € > 0, there exists a corresponding integer N such that

n>N = |a,—a| <e.

AN+2
ag agz  as ay aN+1 agag a4 az
—— 00— 06— (0 00— 000 — 06—

a—¢& a a+e¢

Figure: Convergence of a sequence
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Convergence of a sequence of numbers

an
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a—é&
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Figure:

Convergence of a sequence




Convergence of a sequence of random variables

Xn @ 5w

@ x.(v2)

@ (w3
a+e¢
a
a—«e&

Q

Figure: Convergence of a sequence of random variables. In this picture, X, (w1) and X;,(w>2)

converges toa asn — oo.
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Convergence in probability % :51%4%:&:&%

Definition 6

Let (Q, #, P) be a probability space, and let {X,,} be a sequence of random variables on
it. We say X, converges in probability to X, written as X, L Xasn— oo, if for every € > 0,

P{|X,-X|>€¢} >0 asn— o
Remark
Note that
P{|X, - X| > €} = P{w : | Xy (w) - X(w)| > €}.

We can imagine that each w is a trial, or an experiment, and we consider |X, — X| < ¢
is a success of convergence. Then, convergence in probability can be understood as the
frequency of failures is very small.



Examples ? ALY
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Example 7

Let X1,X5,... be i.i.d. random variables with X, ~ Uniform(0,1). Define v, =
min(Xy, ..., X,). Show that Y, converges in probability to 0.

Proof.

For any € > 0,

P{|Y, — 0| > €} = P{min(Xy,...,X,) > €}
= P{all of X;s are greater than ¢}

n
=l_[]P{Xi>£}:(1—£)”—>O as n — oo,
i=1

p
Therefore, Y, —» 0 as n — co. [ ]



Examples

20

Example 8

/4/ " SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Let X ~ Exp(1) and Y, = X/n. Show that ¥;, converges to 0 in probability.

Proof.

For any € > 0,

P{|Y;, — 0| > €} = P{X > ne}

(o)
= / e Ydx
ne

= e—ne

p
Therefore, Y;, > 0 as n — oo.

— 0 asn — oo.
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Properties

Theorem 9

Let {X,} and {Y,} be two sequences of random variables, and suppose that

then
(a) XniYniaib,

(b) X,Y, > ab, and

N X, P a
(c) nfb¢0,ﬁ—>5.

SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY
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Theorem 10

Let r > 0 be a positive number. If E[|X|"] < oo, E[[X,|"] < oo for each n > 1, and
E[|X, —X|"] = 0 as n — oo, then

X, — X.



Weak law of large numbers ? A3 MY
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Let £, £1,&5,... be a sequence of i.i.d. random variables, with expected value p.

The sample mean is defined by

_ o1&
Xn =& = _Zéi-
=
In practice, we “think” that X, will converge to the true expected value p.

However, the value of X, may differ.

If we are extremely unlucky , | X, — p| may be large: that is, |X;, — | > € for some given
e>0.

With the help of convergence in probability , we can describe this phenomenon.
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Weak law of large numbers ? A3 MY

24

Theorem 11 (Weak law of large numbers)

Let £1,&2,... be a sequence of independent and identically distributed random variables,
each having the finite mean p = E[&;]. Then,

-z P
§n—p asn— oo,

in other words, for any € > 0,

1 n
P{E;&—P

>£}—>0 as n — oo,
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Bernoulli Poisson Markov Khinchin

18 %Al R A LRI R F R Time
1600s 1837 around 1900 1929

m 1600s: Bernoulli proved a special form of LLN for binary random variables, named it as
“Golden theorem”.

m 1837: Poisson described it under the name “la loi des grands nombres”.

m 1900: Markov showed that the law can apply to a weaker condition (second moment is
not necessary).

m 1929: “Finite mean” condition is enough for i.i.d. case.
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Proof.

We only prove the theorem under the additional assumption that Var(£;) = o? is finite.
Now,

2

IE[l Zn]f v (1 anf) o
- i| = H ar| — i| = —>»
nia i n
and it follows from the Chebyshev’s inequality that
1 n
IP{ = > 6 ¢
ni=

For the proof under a weaker condition, we omit the details. [ |

o2
> € <—2—>0 as n — oo,
ne

26



Examples A3 ML,
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Example 12 (Probability and Frequency)

Consider an event A defined in the context of some probabilistic experiment. Let
p = IP(A) be the probability of this event. We consider n independent repetitions
of the experiment, and let M, be the fraction of time that event A occurs; in this
context, M, is often called the empirical frequency of A. Note that

1 n
M, = _Zfi-
niz1

where &; is 1 whenever A occurs, and 0 otherwise; in particular, E[&;] = p. The
weak law applies and shows that when n is large, the empirical frequency is most
likely to be within € of p. Loosely speaking, this allows us to conclude that em-
pirical frequencies are faithful estimates of p. Alternatively, this is a step towards
interpreting the probability p as the frequency of occurrence of A.



Multiple-choice Questions

E[X]

1. Markov’s Inequality, P(X > a) < =, is applicable when:

() X is a normally distributed random variable.
() X is a continuous random variable.
(&) X is a discrete random variable.

() X is a non-negative random variable and a > 0.

28
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Multiple-choice Questions ? A3 MY

29

2. The sequence of random variables X1, X, X3, ... converges in probability to a constant
cif:

() Foralle > 0, P(|X, — c| > ) approaches 0 as n approaches infinity.
() Foralle > 0, P(]X, — c| > €) approaches 1 as n approaches infinity.
O For all e > 0, E(|X, — c| > €) approaches 0 as n approaches infinity.

() Foralle >0, E(|X, — ¢| > €) approaches 1 as n approaches infinity.



Multiple-choice Questions ? A3 MB ALY
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3. Which of the following statements is correct regarding Chebyshev’s inequality?

@
0
@
0

It provides an upper bound on the probability that the absolute deviation of a
random variable from its mean is more than k standard deviations.

It only applies to normally distributed random variables.

It provides a lower bound on the probability that a random variable takes on values
within k standard deviations of its mean.

It states that the sum of the probabilities of all possible outcomes of a random
variable is equal to 1.



True/False Questions & AIMHLY
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4. If X is a random variable with finite mean p and variance o2, then for any k > 0,
Chebyshev’s Inequality states that P(]X — u| > ko) < %

()
()

5. The Weak Law of Large Numbers states that the sample average of a sequence of
independent and identically distributed (i.i.d.) random variables with finite mean p and
variance o2 converges in probability to p.

m ()
()



Strong law of large numbers



Introduction ? A3 ML,

33

SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

m Consider the sequence of random varibles:

£1+& X:§1+“'+§n E1+---+&m
2 7 7 " n ’ n+1

X1=§6, Xo=

m We will be interested in the limit of the sequence X,.

m Let X, = lim X,, then X, is also a random variable.

n—oo

m The Strong law of large numbers guarantees that
X = p almost surely.

m Note that X, X1, Xo, ... are all functions from Q to R, then X, = p is the convergence
of a sequence of functions.



Another way to tell the difference ? A3 Wi %Y
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m From Weak law of large numbers,
P(|X, — p| <€) iscloseto 1 whennis large,
m ltis still possible that at least one of the events
Bu1 ={|Xpr1 —pl > €}, Buo={Xu2—nl>e}, ..., Bum = {Xosm —nl > ¢},
may happen.

m We need to consider a stronger version of law of large numbers.

34



Convergence of function sequences

mletQ=[-1,1]andletf, : Q »> Rbea
sequence of functions.

m What is the limit of f,,?

m For example,

falx) = [nx+( D" sin(1 +x )],

and it can be shown that
lim, e fr(x) = f, where f(x) = x.

35

fa(x)

n=2

n=4
n=o

n=>5
n=3

Figure: {f,} and its limit
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Definition 13

Let {f,} be a sequence of function on Q. Then {f,,} converges pointwise to f : Q — R if
for each x € Q and each ¢ > 0 there exists N > 0 such that

nzN = |fulx) — f(x)]| <e.

Remark
This definition can be rewritten as a language of set theory:

xe0 = xe\J Nix: ) - f)l <&},

e>0N>1n>N

or, equivalently,

Q=M (MxeQ:lfa(x) - )] < €}

>0 N>1n>N



Example

37

Example 14

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Consider the sequence {f,} defined on [0, 1] by f,(x) = x". What is lim f,?

Solution.

Since for all n > 1, f,(1) = 1" = 1, and
therefore, lim f,(1) = 1. On the other
n—oo

hand, if x € [0,1) then
fa(x)=x" >0 asn— oo.

Therefore, the limit is

)0 ifxe[0,1)
ﬂﬂ_{lﬁx:L

n—oo

fa(x)

X

Figure: f; and its limit



Almost sure convergence A EE 2T
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Definition 15

A sequence of random variables {X,} converges almost surely to X, written as X, SN
X (n > ), if

]P{ lim X, :X} =1.
n—ooo

38



Examples & AIMLL

Example 16

Let Q =[0,1], F = B(Q) and P is the Lebesgue measure. Let U(w) = w. Then, we
have U ~ Uniform(0, 1).
Let X, =U". By Example 14, we have

0 ifwe[0,1)

X(w) := lim X,,(w) =
(@) n—oo (@) {1 if w=1.

In this case,
{lim X, =0} ={w:0 < w < 1} :=E,
n—oo
and P(E) = 1. Therefore,

a.s.
X, — 0 asn — oo.

39
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Remark

Note that E = {lim X,, = X} means that, for any w € E, and for any ¢ > 0 (M > 0), there
n—-oo

exists a number N > 0 (depending on ¢ or M) such that for alln > N,

1
Xl’l _X < )
o) ~X| <& (or =)

which is equivalentto E = () ) [ {w : [Xa(w) — X(w)| < £}. Therefore,

e>0N>1n>N

{lim X, =x} = () ) (M{IxXa - x| < e},

e>0 N>1n>N

and

{lim X, =x3 =) U{IX: - X| > €}.

e>0 N>1n>N



Infinitely often ? A3 NS
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Definition 17 (Infinitely often)

Let {A,}n>1 be an infinite sequence of events. We say that the events in the sequence
occur infinitely often, written as A, i.0. if A, holds for an infinite number of indices n €
{1,2,3,...}. Conversely, we say {A,} happens finitely often, written as A, f.o. if they do
not occur infinitely often.

Example 18

mleta,=(-1)", n=1,2,... and let A, = {a, is positive}.

m Leta, =1, and let A, = {|a, — 0] > €}.



Infinitely often

Solution.

B A, i.0. because a, is positive for n =2,4,6,. ...

B A, fo. because |[a,— 0| >¢eonlyifn=1,2,...

42




Infinitely often

Proposition 19
We have

43

{Aqi0.} = ﬁ O A, = lim U A, = limsup Ay,
n=

m—oo 6D

m=1n=m
\/_/
:=sup An

nzm

{4, fo.} = U mA 1111—1)110 mA = lim inf A,,.

n—oo
m=1 n=m =

\/._/
:=inf A

nzm
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Proposition 20
We have X, — X if and only if
P{|X;, — X| > ¢,i.0.} =0 for any £ > 0.

Proof.

= : If P{|X, — X| > €,i.0.} =0 for any € > 0, then, with A,(u) = {|X, — X| > u} for
u > 0, we have for any M > 1,

and therefore,

P(ttim % =319 =) (YU 5] < S P U 57

M=1m=1n

Il
it
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& If X, —5 X, then, by definition,

0= ]P(U ﬁ OAH(E))

e>0 m=1 n=1

> P(ﬁ OAH(S)) for any € > 0

m=1n=1

=P{|X, — X| > ¢,i.0.}.



Borel-Cantelli’s lemma ? A3 ML,

The Borel-Cantelli’s lemma gives a sufficient condition for P{A,,i.0.} = 0.
Proposition 21

Let {An}n>1 be an infinite sequence of events. If 3 P(A;) < oo, then

P{A,,i.0.} = 1.
Proof.
Note that
P{A,,i0} = ]P{ UJ An}
m=1 n=m
= lim ]P(U An) =0 because Z]P(An) < oo,
m—oo e |

46
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Example 22

Consider a sequence of independent events A;,As,... where A, represents the
event that a fair coin flip comes up heads n times in a row. Find P{A,,i.0.}.

Solution.

Since P(A;) = 5, it follows that

DIP(Ay) =1 < oo
n=1

Therefore, by the Borel-Cantelli lemma, P{A,,i.0.} = 0, which means that the probability
that A, occurs infinitely often is O. [



Examples
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Example 23
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Let X1, X, ... be independent and identically distributed Uniform(0, 1) random vari-

ables. SetY, = X,,/n. Show that v, 0.

Proof.

Note that

E[X2]

262 3p2¢2’

P{|Y, — 0] > £} = P{X? > n’¢?} <
n

and it follows that
1
3 <

ZIP{|Y -0]>¢} < %z_;

Therefore, P{|Y;, — 0| > ¢,i.0.} =0, and thus Y, 250.

by Markov’s inequality,
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Relation between convergence a.s. and in probability ? A3 Wi %Y

Proposition 24
If X, 25 X, then X, & X.

Proof.

If X, sl a, then

]P(m U{|Xn -X| > e}) =0 foranye>0,

m=1n=m

which is equivalent to

lim ]P(OHXH ~X|> g}) = 0.

m— oo
n=m

49



SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Relation between convergence a.s. and in probability | | A3 ## 4%
However,
P{|Xn - X| > €} < IP(U{an -X| > E}),
n=m
and therefore,

lim ]P{le —Xl > E} < lim ]P(U{an _Xl > S}) = 0)
m—oo m—oo

n=m

which implies that X, - X. n

Remark

The inverse is not correct. That is, if X, LN X, then it is not necessarily that X, % .

50
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Examples ? A3 M LY
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Example 25 (Conv. in prob. but not a.s.)

Let X, ~ Bernoulli(1/n) be independent. Then X, — 0 but it is not true that X, — 0.

Proof.

For any € > 0,

1
P{|X,-0| >e}=P{X, =1} == >0 asn— oo.
n

So X, 2, 0. On the other hand, note that with A, = {|X, — 0| > ¢},

(o)

P({|X, — 0] > ¢,i.0.}°) = P{AS, fo.} = ]P(U ﬁ A;).

m=1n=m



Examples %

For every m > 1, because A,s are independent,

(e fib--o

n=m n

and therefore,

P({|X, - 0] > ¢,i.0.}°) < i]P(ﬁ A;) =0,

m=1 n=m

which implies that
P{|X, - 0| > ¢,i.0.} = 1.

This proves that X, does not converge a.s. to 0.

52
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Theorem 26

If X, © X, then there exists a sequence {ny} of integers increasing to infinity such
that X, —5 X.

Briefly stated: convergence in probability implies convergence almost surely along a
subsequence.
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Proof.

Because X, LN X, then for any €1 > 0,

n—oo

lim ]P(an -X| > 81) =0.

Take €1 = 27K, then

1
lim IP(an -X| > —) =0, foranyk>1.
n—oo 2’(
Then, for any k > 1, and for €3 = 27k, there exists Ny > 1 such that

1
]P(|Xn—X| > ?) <8=—, foranyn > N.
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Choose ny = Ni which was defined as above, and let
1
Ei= {1~ X| > ).

Then, we have
(o) [ee] 1
Z]P(Ek) < Z oF =1.
k=1 k=1

For any € > 0, define

A = {|Xn, — X| > €}.

Then, for k > log,(1/€), we have € > 27X, and it follows that A, C Ej.
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Therefore,

oo [logy (1/€)]
DIPA) = >, PA+ > P(E;) < [logy(1/€)] +1 < oco.
k=1 k=1 k=[logy (1/e)]+1

By the Borel-Cantelli lemma, we have

P(Axi.0.) =0,

X
which implies that X,;, — almost surely as k — oo.



Convergence in LP and convergence a.s.

m Convergence in L? does not imply convergence a.s.
m Convergence a.s. does not imply convergence in L?, either.

m Convergence in probability does not imply convergence in L?.

57
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Convergence in LP does not imply convergence a.s.

Consider the probability space ([0, 1], &[0, 1], P), where P = A is the Lebesgue measure.
Define

X1 =101,

Xo =1y0,1/21, X3 =1[1/2,1],

X4 =1101741, X5 =1[1741/2], X6 =1[1/2,3/4], X7 =1[3/41],
Xs =1{0,1/8]>

That is,
Xn = 1[(j-1)/2,j/2¢)>

where k = [logon] and j=n — 2%+ 1.
For example, if n = 9, then k = [log, 9] = 3, and j = n — 2 + 1 = 2, then

Xg =1

‘ —

2 1.
2]

Wl

2
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Therefore,

j—1 j 1 2
IE|Xn|P=IP({w:]?<w 2]k})=———<——>0 asn — oo,

N
|

Hence, by definition,

However, for any w € [0, 1], and for any N > 1, there exists n > N such that
Xy (w) = 1.
Then there exists infinitely many n such that X,,(w) = 1. Therefore,

X, 7~ 0 almost surely.
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Convergence in probability does not implies convergence in LP

Define
Y, = n'/PXx,.

Then, for any € € (0, 1),

2
P(Y,>¢e) <PY,>0)=PX,=1)<—-—>0 asn— oo,
n

which implies that Y;, 2.
However,

E[¥}] = nP(X,= 1) = - n

— > 1.
[logg n]
Therefore,

Y, /A~ 0 inLP.
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Convergence a.s. does not imply convergence in L?

Define
U, = Tll/pl[o,l/n].

Then, asn — oo, U, — 0 a.s.
However,

1
E|X,P=nx—-=1.
n

Therefore,

X, /A~ 0 inL?.



Strong law of large numbers & AIMBLY
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Theorem 27

Let £,&1,...,&, be a sequence of i.id. randorrl variables with common mean p and
variance 0. Assume that E[£%] < co. Let X, = &, be the sample mean. Then,

P{lim X, = p} = 1.
n—oo

Remark

m The assumption can be relaxed to E|£| < co.
m The strong law flips the order of limit and probability.
m Strong law # deterministic.

m The strong law asserts that there are a finite number of failures (|X,, — u| > ¢).
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Multiple-choice Questions ? A3 Wi %Y
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1. (Multiple Choice) The sequence of random variables X1, Xo, X3, ... converges almost
surely to a constant c if:

() Foralle > 0, P(|X, — c| > ) approaches 0 as n approaches infinity.
() Foralle > 0, P(|X, —c| > ¢,i.0.) = 0.
) Foralle > 0, P(|X, — c| < ¢&,i.0.) = 1.

() Foralle >0, E(]X, — ¢| > €) approaches 0 as n approaches infinity.
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2. (True/False) The Strong Law of Large Numbers states that the sample average of a
sequence of independent and identically distributed (i.i.d.) random variables with finite
mean u converges almost surely to p.

) True
) False
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3. (Multiple Choice) Which of the following best describes the difference between the
Weak Law of Large Numbers and the Strong Law of Large Numbers?

() The Weak Law of Large Numbers applies to sequences of i.i.d. random variables,
while the Strong Law of Large Numbers applies to sequences of dependent
random variables.

O The Weak Law of Large Numbers pertains to convergence in probability, while the
Strong Law of Large Numbers pertains to almost sure convergence.

() The Weak Law of Large Numbers pertains to almost sure convergence, while the
Strong Law of Large Numbers pertains to convergence in probability.

O The Weak Law of Large Numbers applies to sequences of random variables with
finite mean, while the Strong Law of Large Numbers applies to sequences of
random variables with finite variance.
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4. (True/False) Almost sure convergence implies convergence in probability, but
convergence in probability does not imply almost sure convergence.

) True
() False
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5. (Multiple Choice) Given a sequence of i.i.d. random variables X, Xo, X3, ... with finite
mean p, under which condition does the Strong Law of Large Numbers hold?

() The random variables have finite variance.
() The random variables have finite kurtosis.
O The random variables have a finite second moment.

() None of the above is necessary.
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Definition 28

m A sequence of random variables X3, X», ..., X, converges in distribution (or in law) to
a random variable X if the cumulative distribution function (CDF) of X, converges to
the CDF of X at all points where F(x) is continuous.

m Formally, X, converges to X in distribution if lim F,,(x) = F(x) for all x at which F(x)
n—ooo
is continuous.
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m Convergence in probability and almost sure convergence are stronger than
convergence in distribution. That is, if a sequence of random variables converges in
probability or almost surely, it will also converge in distribution.

m However, the converse is not true: convergence in distribution does not imply
convergence in probability or almost surely.
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m The Central Limit Theorem (CLT) is a fundamental theorem in probability theory and
statistics which states that the sum of a large number of independent and identically
distributed (i.i.d.) random variables, each with finite mean and variance, will have a
distribution that is approximately normal.

m The CLT is an example of convergence in distribution: as the number of random
variables increases, the distribution of the sum (properly normalized) converges to a
normal distribution.

7
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Theorem 29
p d
If X, — X, then X,, — X.
Proof.
For any a < b,

F(a) = P{X < a} = P({X < a} N {X, < b}) + P({X < a} N {X, > b})
< P{X, < b} +P({X < a} N {X; > b}),

and the second term can be bounded by
PH{X <a}Nn{X, >b}) <P{|X, - X|>b—-a} — 0.

Therefore, F(a) < liminf, o, P{X;, < b}. Similarly, limsup,_,. P{X, < b} < F(a) if
a’ > b. If bis a continuity point of F, thenasa T band a’ | b, F(b) = lim,,oc P{X, <Db}. ®m
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Theorem 30

For any constant aq,

Proof.

We only prove the <= part. For any ¢ > 0,
P{|X, —a| > e} =P{X,, > a+£}+]P{X a-e¢}
<SP{X,>a+- }+]P{Xn a-e}
=1-Fy(a+ 5) +Fp(a—c¢),
where
€ €
Fn(a+§) —>F(a+§) =1, Fyla—¢€) > F(a—¢)=0,

and thus P{|X, —a| > ¢} — 0.
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m The law of large numbers:

én—u=lZ(§i—u)—>0-
Nz

m How close is the convergence?

m We know that

2
= o
Var(§n, —p) = —,
n

where o2 = Var(§).

m Consider the normalized variable:

‘/H(én - IJ) 7

Zp=—+—20 2
(o)

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr



Figure: Pictorial illustration of the Central Limit Theorem. Suppose we throw a die and record the face
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CLT: i.i.d. random variables ? A3 ML,
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Theorem 31

Let &, &1, &, ... be a sequence of i.i.d. random variables with i = E[£] and 02 = Var(§).
Let

7 V@ —p)
(o)

The cdf of Z, is converging pointwise to the cdf of N(0, 1), in other words, for every
x €R,

1 X
P{Z, < x} - ®(x) = \/?/ e"/2dt, asn — .
71' —_

(9]

Remark

If & ~ N (1, 0%), then Z,, is exactly a N(0, 1) random variable.
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LetS, =& +---+&,. lfnis large, then the probability IP{S,, < s} can be approximated by
treating S, as if it were normal:
(i) Calculate the mean nu and the variance no? of S,,.

(ii) Calculate the normalized value

(iii) Use the approximation:

P{S, < s} = @(z).
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Example 32

We load on a plane 100 packages whose weights are independent random variables
that are uniformly distributed between 5 and 50 pounds. What is the probability
that the total weight will exceed 3000 pounds? It is not easy to calculate the cdf
of the total weight and the desired probability, but an approximate answer can be
quickly obtained using the central limit theorem.

Solution.

Let & be the weight of the ith package for every i > 1, then it follows that & ~
Uniform(5, 50). Let S, = & +--- + &, be the sum of the weights of n packages. We
want to calculate P{S1g99 > 3000}.
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Solution (Contd).

Now, since

_5+50 5 (50 —5)2
0" =—

=27.5 = 168.75
) 12 3

we have
B 3000 — (100)(27.5)

/(100)(168.75)

= 1.92.

Therefore, by the CLT,

P{S100 > 3000} = 1 — P{S190 < 3000} ~ 1 — &(1.92) ~ 0.274.

SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY
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Example 33

We poll n voters and record the fraction M, of those polled who are in favor of a
particular candidate. If p is the fraction of the entire voter population that supports
this candidate, then

M= (814 +E0),
n

where {§;} are independent Bernoulli random variables with parameter p. Then,
E[&;] = p and Var(§;) = p(1 — p), and it follows that

_ Vn(My — ) _ V(M —p)
o vp(1-p)

Zn

Therefore, by the CLT,

P{M, —p > €} < 1 - ®(2Vne).
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g ’&ﬂ

de Moivre Laplace Lyapunov Pélya

HE b g3ty FREEKX A -
m
1733 1812 1901 1920 me

m 1733: de Moivre used the normal distribution to approximate the distribution of the
number of heads resulting from many tosses of a fair coin.

m 1812: Laplace approximated the binomial distribution with the normal distribution.
m 1901: Lyapunov gave a rigorous proof of the central limit theorem.

m 1920: Poélya referred to the theorem as “central” due to its importance in probability
theory.



de Moivre-Laplace approximation to the binomial

m If S, ~ Binomial(n, p), then it can be viewed as
Sh=§&1+---+&, & ~ Bernoulli(p).

m Suppose that we want to calculate

1
Plk<Sy <t} <Plk-5 <Si<l+ )} <Pk-1<s,<t+1)

1
2

Improved to

83
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Theorem 34 (De Moivre-Laplace approximation)

If S, ~ Binomial(n, p), where n is large and k < ¢ are nonnegative integers, then

t+1-n k—-1-n
1P{k<5n<€}z¢>( 2 p)—cb( 2 p).

ynp(1-p) ynp(1 - p)




85

Example 35

Let S, ~ Binomial(36,0.5). Find IP{S, < 21}.

Solution.

21

An exact calculation yields: P{S, < 21} = >

k=0

theorem, without the above refinement, yields:

P{S, < 21} =
However, using the refinement,

P{S, < 21} ~ @(

|

36
k

)(0.5)36 = 0.8785075. The central limit

(p( 21 — (36)(0.5)
V(36)(0.5)(1 - 0.5)

21.5 — (36)(0.5)

) =@(1) ~ 0.8413.

V(36)(0.5)(1 - 0.5)

) = @(1.17) = 0.8789995. u
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1. (Multiple Choice) Consider a sequence of independent and identically distributed (i.i.d.)
random variables X, X», ..., X, with mean p and variance 02. The Central Limit
Theorem (CLT) best applies to:

O X1+Xo+...+ X,

n

X1+Xo+ ...+ X
@ vn - L —p

E Vre -p)
() None of the above
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2. (True/False) Convergence in distribution implies that the sequence of random variables
converges to the limit in the sense of having the same expected values and variances.

) True
() False
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3. (Multiple Choice) Which of the following is true about the Central Limit Theorem (CLT)?

(e

o)
@

It states that the sum of a large number of independent and identically distributed
random variables, each with finite mean u and variance o2, will be approximately
normally distributed N (np, no?).

It applies only to normally distributed random variables.

It states that the mean of a large number of independent and identically distributed
random variables, each with finite mean u and variance o2, will be approximately
normally distributed N (uz, 02).

It requires the random variables to be independent but not identically distributed.
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Multiple-choice Questions ? A3 MY
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4. (True/False) The Central Limit Theorem ensures that, with a sufficiently large sample
size, the sampling distribution of the sample mean is approximately normally distributed,
regardless of the shape of the population distribution.

) True
) False
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Multiple-choice Questions CAEFE T
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5. (Multiple Choice) Convergence in distribution of a sequence of random variables {X,} to
a random variable X is defined by:

() P(X, < x) » P(X < x) as n — oo for every number x at which F(x) is continuous.
) E(x,) — E(X) and Var(X,) — Var(X) as n — co.
O P(|X, —X|>¢€) > 0asn — co.

) P(|x, - X]| > €,i.0.) =0.
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