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Limit Theorems in Probability Theory

■ The most important theoretical results in probability theory are limit theorems.

■ Among which the most important are those classified either under the heading laws of
large numbers or under the heading central limit theorems.

■ The Law of Large Numbers: As the sample size increases, the sample mean converges
to the true mean.

■ Central Limit Theorem: As the sample size increases, the distribution of the sample
mean approaches a normal distribution.
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Example: Tossing a Fair Coin

■ Toss a fair coin repeatedly, record the proportion of times it comes up heads.

■ The Law of Large Numbers tells us that as the number of coin tosses increases, the
proportion of heads will approach 0.5.

■ If we toss the coin a large number of times, we should expect the proportion of heads to
be very close to 0.5.
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Example: Rolling a Fair Die

■ Roll a fair six-sided die repeatedly, record the average value of the rolls.

■ The Central Limit Theorem tells us that as the number of rolls increases, the distribution
of the average values will become approximately normal.

■ If we roll the die a large number of times and calculate the average value of the rolls, the
distribution of these average values will be bell-shaped, with a mean close to 3.5 and a
standard deviation that decreases as the number of rolls increases.
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Example: Measuring Heights of Students

■ Measure the heights of a large number of students, record the average height.

■ The Central Limit Theorem tells us that as the sample size increases, the distribution of
the average heights will become approximately normal.

■ If we measure the heights of a large number of students and calculate the average
height, the distribution of these average values will be bell-shaped, with a mean close to
the true average height of the population and a standard deviation that decreases as
the sample size increases.
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Some important inequalities
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Markov’s inequality

Proposition 1 (Markov’s inequality)

If 𝑋 is a random variable that takes only
nonnegative values, then

ℙ{𝑋 ⩾ 𝑎} ⩽ 𝔼[𝑋]
𝑎

for all 𝑎 > 0. Figure: A. A. Markov (马尔可夫, 1856–1922)

8



Proof.
Note that 𝑋 is nonnegative, then,

ℙ(𝑋 ⩾ 𝑎) = 𝔼[1{𝑋⩾𝑎}]

⩽ 𝔼

[
𝑋

𝑎

]
=
𝔼[𝑋]
𝑎

. ■
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Chebyshev’s inequality

Proposition 2

If 𝑋 is a random variable with finite mean 𝜇
and variance 𝜎2, then, for any value 𝑎 > 0,

ℙ{|𝑋 − 𝜇 | ⩾ 𝑎} ⩽ 𝜎2

𝑎2 .

Figure: Chebyshev (切比雪夫)

Proof.
We will apply Markov’s inequality to prove it. Note that

ℙ{|𝑋 − 𝜇 | ⩾ 𝑎} = ℙ{|𝑋 − 𝜇 |2 ⩾ 𝑎2} ⩽ 𝔼[(𝑋 − 𝜇)2]
𝑎2 =

Var(𝑋)
𝑎2 . ■
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Examples

Example 3

Suppose that it is known that the number of items produced in a factory during a
week is a random variable with mean 50.
(a) What can be said about the probability that this week’s production will exceed

75?

(b) If the variance of a week’s production is known to equal 25, then what can
be said about the probability that this week’s production will be between 40
and 60?

Solution.
Let 𝑋 be the number of items produced during a weak. Then, we are going to estimate
ℙ{𝑋 > 75} and ℙ{40 < 𝑋 < 60}.
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Examples

Solution (Cont’d).
(a) As 𝑋 is nonnegative, by Markov’s equality,

ℙ{𝑋 > 75} ⩽ 𝔼[𝑋]
75

=
50
75

≈ 0.667.

(b) By Chebyshev’s inequality, it follows that

ℙ{|𝑋 − 50| ⩾ 10} ⩽ Var(𝑋)
102 =

25
100

= 0.25,

and therefore,

ℙ{40 < 𝑋 < 60} ⩾ 1 − 0.25 = 0.75. ■
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Degenerate random variables

Proposition 4

If Var(𝑋) = 0, then

ℙ{𝑋 = 𝔼[𝑋]} = 1.

In other words, the only random variables having variances equal to 0 are those which
are constant with probability 1.
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Weak law of large numbers
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Convergence of a sequence of numbers

Definition 5
A sequence {𝑎𝑛} has the limit 𝑎, written as

lim
𝑛→∞

𝑎𝑛 = 𝑎 or 𝑎𝑛 → 𝑎 as 𝑛 → ∞

if for every 𝜀 > 0, there exists a corresponding integer 𝑁 such that

𝑛 > 𝑁 =⇒ |𝑎𝑛 − 𝑎| < 𝜀.

𝑎1 𝑎2𝑎3 𝑎4𝑎5 𝑎6𝑎7 𝑎8

𝑎
(

𝑎 − 𝜀
)

𝑎 + 𝜀

𝑎𝑁+1
𝑎𝑁+2

Figure: Convergence of a sequence
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Convergence of a sequence of numbers

𝑛

𝑎𝑛

𝑎
𝑎 + 𝜀

𝑎 − 𝜀

𝑁

Figure: Convergence of a sequence
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Convergence of a sequence of random variables

𝛺

𝜔1

𝜔2

𝜔3

. . .

𝑛

𝑋𝑛

𝑎
𝑎 + 𝜀

𝑎 − 𝜀

𝑋𝑛 (𝜔1 )

𝑋𝑛 (𝜔2 )

𝑋𝑛 (𝜔3 )

Figure: Convergence of a sequence of random variables. In this picture, 𝑋𝑛 (𝜔1) and 𝑋𝑛 (𝜔2)
converges to 𝑎 as 𝑛 → ∞.
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Convergence in probability

Definition 6
Let (𝛺,ℱ,ℙ) be a probability space, and let {𝑋𝑛} be a sequence of random variables on
it. We say 𝑋𝑛 converges in probability to 𝑋 , written as 𝑋𝑛

𝑝−→ 𝑋 as 𝑛 → ∞, if for every 𝜀 > 0,

ℙ{|𝑋𝑛 − 𝑋 | > 𝜀} → 0 as 𝑛 → ∞

Remark
Note that

ℙ{|𝑋𝑛 − 𝑋 | > 𝜀} = ℙ{𝜔 : |𝑋𝑛(𝜔) − 𝑋 (𝜔) | > 𝜀}.

We can imagine that each 𝜔 is a trial, or an experiment, and we consider |𝑋𝑛 − 𝑋 | ⩽ 𝜀
is a success of convergence. Then, convergence in probability can be understood as the
frequency of failures is very small.
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Examples

Example 7

Let 𝑋1, 𝑋2, . . . be i.i.d. random variables with 𝑋𝑛 ∼ Uniform(0, 1). Define 𝑌𝑛 =
min(𝑋1, . . . , 𝑋𝑛). Show that 𝑌𝑛 converges in probability to 0.

Proof.
For any 𝜀 > 0,

ℙ{|𝑌𝑛 − 0| > 𝜀} = ℙ{min(𝑋1, . . . , 𝑋𝑛) > 𝜀}
= ℙ{all of 𝑋𝑖’s are greater than 𝜀}

=
𝑛∏
𝑖=1

ℙ{𝑋𝑖 > 𝜀} = (1 − 𝜀)𝑛 → 0 as 𝑛 → ∞.

Therefore, 𝑌𝑛
𝑝−→ 0 as 𝑛 → ∞. ■
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Examples

Example 8

Let 𝑋 ∼ Exp(1) and 𝑌𝑛 = 𝑋/𝑛. Show that 𝑌𝑛 converges to 0 in probability.

Proof.
For any 𝜀 > 0,

ℙ{|𝑌𝑛 − 0| ⩾ 𝜀} = ℙ{𝑋 ⩾ 𝑛𝜀}

=
∫ ∞

𝑛𝜀
𝑒−𝑥𝑑𝑥

= 𝑒−𝑛𝜀 → 0 as 𝑛 → ∞.

Therefore, 𝑌𝑛
𝑝−→ 0 as 𝑛 → ∞. ■

20



Properties

Theorem 9
Let {𝑋𝑛} and {𝑌𝑛} be two sequences of random variables, and suppose that

𝑋𝑛
𝑝−→ 𝑎, 𝑌𝑛

𝑝−→ 𝑏,

then
(a) 𝑋𝑛 ± 𝑌𝑛

𝑝−→ 𝑎 ± 𝑏,

(b) 𝑋𝑛𝑌𝑛
𝑝−→ 𝑎𝑏, and

(c) if 𝑏 ≠ 0, 𝑋𝑛
𝑌𝑛

𝑝−→ 𝑎
𝑏 .
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Theorem 10
Let 𝑟 > 0 be a positive number. If 𝔼[|𝑋 |𝑟] < ∞, 𝔼[|𝑋𝑛 |𝑟] < ∞ for each 𝑛 ⩾ 1, and
𝔼[|𝑋𝑛 − 𝑋 |𝑟] → 0 as 𝑛 → ∞, then

𝑋𝑛
𝑝−→ 𝑋.
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Weak law of large numbers

■ Let 𝜉, 𝜉1, 𝜉2, . . . be a sequence of i.i.d. random variables, with expected value 𝜇.

■ The sample mean is defined by

𝑋𝑛 := 𝜉𝑛 =
1
𝑛

𝑛∑
𝑖=1

𝜉𝑖.

■ In practice, we “think” that 𝑋𝑛 will converge to the true expected value 𝜇.

■ However, the value of 𝑋𝑛 may differ.

■ If we are extremely unlucky , |𝑋𝑛 − 𝜇 | may be large: that is, |𝑋𝑛 − 𝜇 | > 𝜀 for some given
𝜀 > 0.

■ With the help of convergence in probability , we can describe this phenomenon.
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Weak law of large numbers

Theorem 11 (Weak law of large numbers)

Let 𝜉1, 𝜉2, . . . be a sequence of independent and identically distributed random variables,
each having the finite mean 𝜇 = 𝔼[𝜉𝑖]. Then,

𝜉𝑛
𝑝−→ 𝜇 as 𝑛 → ∞,

in other words, for any 𝜀 > 0,

ℙ

{����1𝑛 𝑛∑
𝑖=1

𝜉𝑖 − 𝜇

���� > 𝜀

}
→ 0 as 𝑛 → ∞.
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Time

Bernoulli
伯努利

1600s

Poisson
泊松

1837

Markov
马尔可夫

around 1900

Khinchin
辛钦

1929

■ 1600s: Bernoulli proved a special form of LLN for binary random variables, named it as
“Golden theorem”.

■ 1837: Poisson described it under the name “la loi des grands nombres”.

■ 1900: Markov showed that the law can apply to a weaker condition (second moment is
not necessary).

■ 1929: “Finite mean” condition is enough for i.i.d. case.
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Proof

Proof.
We only prove the theorem under the additional assumption that Var(𝜉1) = 𝜎2 is finite.
Now,

𝔼

[
1
𝑛

𝑛∑
𝑖=1

𝜉𝑖

]
= 𝜇, Var

(
1
𝑛

𝑛∑
𝑖=1

𝜉𝑖

)
=

𝜎2

𝑛
,

and it follows from the Chebyshev’s inequality that

ℙ

{����1𝑛 𝑛∑
𝑖=1

𝜉𝑖 − 𝜇

���� > 𝜀

}
⩽

𝜎2

𝑛𝜀2 → 0 as 𝑛 → ∞.

For the proof under a weaker condition, we omit the details. ■
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Examples

Example 12 (Probability and Frequency)

Consider an event 𝐴 defined in the context of some probabilistic experiment. Let
𝑝 = ℙ(𝐴) be the probability of this event. We consider 𝑛 independent repetitions
of the experiment, and let 𝑀𝑛 be the fraction of time that event 𝐴 occurs; in this
context, 𝑀𝑛 is often called the empirical frequency of 𝐴. Note that

𝑀𝑛 =
1
𝑛

𝑛∑
𝑖=1

𝜉𝑖.

where 𝜉𝑖 is 1 whenever 𝐴 occurs, and 0 otherwise; in particular, 𝔼[𝜉𝑖] = 𝑝. The
weak law applies and shows that when 𝑛 is large, the empirical frequency is most
likely to be within 𝜀 of 𝑝. Loosely speaking, this allows us to conclude that em-
pirical frequencies are faithful estimates of 𝑝. Alternatively, this is a step towards
interpreting the probability 𝑝 as the frequency of occurrence of 𝐴.
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Multiple-choice Questions

1. Markov’s Inequality, ℙ(𝑋 ⩾ 𝑎) ⩽ 𝔼[𝑋 ]
𝑎 , is applicable when:

A. 𝑋 is a normally distributed random variable.

B. 𝑋 is a continuous random variable.

C. 𝑋 is a discrete random variable.

D. 𝑋 is a non-negative random variable and 𝑎 > 0.
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Multiple-choice Questions

2. The sequence of random variables 𝑋1, 𝑋2, 𝑋3, . . . converges in probability to a constant
𝑐 if:
A. For all 𝜀 > 0, ℙ(|𝑋𝑛 − 𝑐| > 𝜀) approaches 0 as 𝑛 approaches infinity.

B. For all 𝜀 > 0, ℙ(|𝑋𝑛 − 𝑐| > 𝜀) approaches 1 as 𝑛 approaches infinity.

C. For all 𝜀 > 0, 𝔼(|𝑋𝑛 − 𝑐| > 𝜀) approaches 0 as 𝑛 approaches infinity.

D. For all 𝜀 > 0, 𝔼(|𝑋𝑛 − 𝑐| > 𝜀) approaches 1 as 𝑛 approaches infinity.
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Multiple-choice Questions

3. Which of the following statements is correct regarding Chebyshev’s inequality?
A. It provides an upper bound on the probability that the absolute deviation of a

random variable from its mean is more than 𝑘 standard deviations.

B. It only applies to normally distributed random variables.

C. It provides a lower bound on the probability that a random variable takes on values
within 𝑘 standard deviations of its mean.

D. It states that the sum of the probabilities of all possible outcomes of a random
variable is equal to 1.
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True/False Questions

4. If 𝑋 is a random variable with finite mean 𝜇 and variance 𝜎2, then for any 𝑘 > 0,
Chebyshev’s Inequality states that ℙ(|𝑋 − 𝜇 | ⩾ 𝑘𝜎) ⩽ 1

𝑘 .

■ True.

■ False.

5. The Weak Law of Large Numbers states that the sample average of a sequence of
independent and identically distributed (i.i.d.) random variables with finite mean 𝜇 and
variance 𝜎2 converges in probability to 𝜇.
■ True.

■ False.
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Strong law of large numbers
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Introduction

■ Consider the sequence of random varibles:

𝑋1 = 𝜉1, 𝑋2 =
𝜉1 + 𝜉2

2
, . . . , 𝑋𝑛 =

𝜉1 + · · · + 𝜉𝑛
𝑛

, 𝑋𝑛+1 =
𝜉1 + · · · + 𝜉𝑛+1

𝑛 + 1
, . . .

■ We will be interested in the limit of the sequence 𝑋𝑛.

■ Let 𝑋∞ = lim
𝑛→∞

𝑋𝑛, then 𝑋∞ is also a random variable.

■ The Strong law of large numbers guarantees that

𝑋∞ = 𝜇 almost surely.

■ Note that 𝑋∞, 𝑋1, 𝑋2, . . . are all functions from 𝛺 to ℝ, then 𝑋∞ = 𝜇 is the convergence
of a sequence of functions.
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Another way to tell the difference

■ From Weak law of large numbers，

ℙ
(
|𝑋𝑛 − 𝜇 | < 𝜀

)
is close to 1 when 𝑛 is large,

■ It is still possible that at least one of the events

𝐵𝑛+1 = {|𝑋𝑛+1 − 𝜇 | ⩾ 𝜀}, 𝐵𝑛+2 = {|𝑋𝑛+2 − 𝜇 | ⩾ 𝜀}, . . . , 𝐵𝑛+𝑚 = {|𝑋𝑛+𝑚 − 𝜇 | ⩾ 𝜀}, . . .

may happen.

■ We need to consider a stronger version of law of large numbers.
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Convergence of function sequences

■ Let 𝛺 = [−1, 1] and let 𝑓𝑛 : 𝛺 → ℝ be a
sequence of functions.

■ What is the limit of 𝑓𝑛?

■ For example,

𝑓𝑛(𝑥) =
1
𝑛
[𝑛𝑥 + (−1)𝑛 sin(1 + 𝑥2)],

and it can be shown that
lim𝑛→∞ 𝑓𝑛(𝑥) = 𝑓 , where 𝑓 (𝑥) = 𝑥.

𝑥

𝑓𝑛(𝑥)

𝑛 = 1

𝑛 = 2

𝑛 = 3

𝑛 = 4

𝑛 = 5
𝑛 = ∞

Figure: { 𝑓𝑛} and its limit
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Definition 13
Let { 𝑓𝑛} be a sequence of function on 𝛺. Then { 𝑓𝑛} converges pointwise to 𝑓 : 𝛺 → ℝ if
for each 𝑥 ∈ 𝛺 and each 𝜀 > 0 there exists 𝑁 > 0 such that

𝑛 ⩾ 𝑁 =⇒ | 𝑓𝑛(𝑥) − 𝑓 (𝑥) | < 𝜀.

Remark
This definition can be rewritten as a language of set theory:

𝑥 ∈ 𝛺 =⇒ 𝑥 ∈
⋂
𝜀>0

⋃
𝑁⩾1

⋂
𝑛>𝑁

{𝑥 : | 𝑓𝑛(𝑥) − 𝑓 (𝑥) | ⩽ 𝜀},

or, equivalently,

𝛺 =
⋂
𝜀>0

⋃
𝑁⩾1

⋂
𝑛>𝑁

{𝑥 ∈ 𝛺 : | 𝑓𝑛(𝑥) − 𝑓 (𝑥) | ⩽ 𝜀}.
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Example

Example 14

Consider the sequence { 𝑓𝑛} defined on [0, 1] by 𝑓𝑛(𝑥) = 𝑥𝑛. What is lim
𝑛→∞

𝑓𝑛?

Solution.
Since for all 𝑛 ⩾ 1, 𝑓𝑛(1) = 1𝑛 = 1, and
therefore, lim

𝑛→∞
𝑓𝑛(1) = 1. On the other

hand, if 𝑥 ∈ [0, 1) then

𝑓𝑛(𝑥) = 𝑥𝑛 → 0 as 𝑛 → ∞.

Therefore, the limit is

𝑓 (𝑥) =
{

0 if 𝑥 ∈ [0, 1)
1 if 𝑥 = 1.

■
𝑥

𝑓𝑛(𝑥)

Figure: 𝑓𝑛 and its limit
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Almost sure convergence

Definition 15

A sequence of random variables {𝑋𝑛} converges almost surely to 𝑋 , written as 𝑋𝑛
𝑎.𝑠.−−→

𝑋 (𝑛 → ∞), if

ℙ

{
lim
𝑛→∞

𝑋𝑛 = 𝑋

}
= 1.
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Examples

Example 16

Let 𝛺 = [0, 1], ℱ = ℬ(𝛺) and ℙ is the Lebesgue measure. Let 𝑈 (𝜔) = 𝜔. Then, we
have 𝑈 ∼ Uniform(0, 1).
Let 𝑋𝑛 = 𝑈𝑛. By Example 14, we have

𝑋 (𝜔) := lim
𝑛→∞

𝑋𝑛(𝜔) =
{

0 if 𝜔 ∈ [0, 1)
1 if 𝜔 = 1.

In this case,

{ lim
𝑛→∞

𝑋𝑛 = 0} = {𝜔 : 0 ⩽ 𝜔 < 1} := 𝐸,

and ℙ(𝐸) = 1. Therefore,

𝑋𝑛
𝑎.𝑠.−−→ 0 as 𝑛 → ∞.
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Remark
Note that 𝐸 = { lim

𝑛→∞
𝑋𝑛 = 𝑋} means that, for any 𝜔 ∈ 𝐸, and for any 𝜀 > 0 (𝑀 > 0), there

exists a number 𝑁 > 0 (depending on 𝜀 or 𝑀) such that for all 𝑛 > 𝑁,

|𝑋𝑛(𝜔) − 𝑋 | ⩽ 𝜀 (or 1
𝑀
),

which is equivalent to 𝐸 =
⋂
𝜀>0

⋃
𝑁⩾1

⋂
𝑛>𝑁

{
𝜔 : |𝑋𝑛(𝜔) − 𝑋 (𝜔) | ⩽ 𝜀

}
. Therefore,

{ lim
𝑛→∞

𝑋𝑛 = 𝑋} =
⋂
𝜀>0

⋃
𝑁⩾1

⋂
𝑛>𝑁

{
|𝑋𝑛 − 𝑋 | ⩽ 𝜀

}
,

and

{ lim
𝑛→∞

𝑋𝑛 = 𝑋}𝑐 =
⋃
𝜀>0

⋂
𝑁⩾1

⋃
𝑛>𝑁

{
|𝑋𝑛 − 𝑋 | > 𝜀

}
.
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Infinitely often

Definition 17 (Infinitely often)
Let {𝐴𝑛}𝑛⩾1 be an infinite sequence of events. We say that the events in the sequence
occur infinitely often, written as 𝐴𝑛 i.o. if 𝐴𝑛 holds for an infinite number of indices 𝑛 ∈
{1, 2, 3, . . . }. Conversely, we say {𝐴𝑛} happens finitely often, written as 𝐴𝑛 f.o. if they do
not occur infinitely often.

Example 18

■ Let 𝑎𝑛 = (−1)𝑛, 𝑛 = 1, 2, . . . and let 𝐴𝑛 = {𝑎𝑛 is positive}.

■ Let 𝑎𝑛 = 1
𝑛 , and let 𝐴𝑛 = {|𝑎𝑛 − 0| > 𝜀}.
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Infinitely often

Solution.
■ 𝐴𝑛 i.o. because 𝑎𝑛 is positive for 𝑛 = 2, 4, 6, . . . .

■ 𝐴𝑛 f.o. because |𝑎𝑛 − 0| > 𝜀 only if 𝑛 = 1, 2, . . . , ⌊ 1
𝜀 ⌋. ■

42



Infinitely often

Proposition 19

We have

{𝐴𝑛 i.o.} =
∞⋂

𝑚=1

∞⋃
𝑛=𝑚

𝐴𝑛 = lim
𝑚→∞

∞⋃
𝑛=𝑚

𝐴𝑛︸ ︷︷ ︸
:=sup

𝑛⩾𝑚
𝐴𝑛

= lim sup
𝑛→∞

𝐴𝑛,

{𝐴𝑛 f.o.} =
∞⋃

𝑚=1

∞⋂
𝑛=𝑚

𝐴𝑐
𝑛 = lim

𝑚→∞

∞⋂
𝑛=𝑚

𝐴𝑐
𝑛︸ ︷︷ ︸

:= inf
𝑛⩾𝑚

𝐴𝑐
𝑛

= lim inf
𝑛→∞

𝐴𝑛.
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Proposition 20

We have 𝑋𝑛
𝑎.𝑠.−−→ 𝑋 if and only if

ℙ{|𝑋𝑛 − 𝑋 | > 𝜀, i.o.} = 0 for any 𝜀 > 0.

Proof.
=⇒ : If ℙ{|𝑋𝑛 − 𝑋 | > 𝜀, i.o.} = 0 for any 𝜀 > 0, then, with 𝐴𝑛(𝑢) = {|𝑋𝑛 − 𝑋 | > 𝑢} for
𝑢 > 0, we have for any 𝑀 ⩾ 1,

ℙ

( ∞⋂
𝑚=1

∞⋃
𝑛=1

𝐴𝑛

(
1
𝑀

))
= 0,

and therefore,

ℙ({ lim
𝑛→∞

𝑋𝑛 = 𝑋}𝑐) = ℙ

( ∞⋃
𝑀=1

∞⋂
𝑚=1

∞⋃
𝑛=1

𝐴𝑛

(
1
𝑀

))
⩽

∞∑
𝑀=1

ℙ

( ∞⋂
𝑚=1

∞⋃
𝑛=1

𝐴𝑛

(
1
𝑀

))
= 0.
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⇐= : If 𝑋𝑛
𝑎.𝑠.−−→ 𝑋 , then, by definition,

0 = ℙ

(⋃
𝜀>0

∞⋂
𝑚=1

∞⋃
𝑛=1

𝐴𝑛(𝜀)
)

⩾ ℙ

( ∞⋂
𝑚=1

∞⋃
𝑛=1

𝐴𝑛(𝜀)
)

for any 𝜀 > 0

= ℙ{|𝑋𝑛 − 𝑋 | > 𝜀, i.o.}. ■
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Borel-Cantelli’s lemma

The Borel-Cantelli’s lemma gives a sufficient condition for ℙ{𝐴𝑛, i.o.} = 0.

Proposition 21

Let {𝐴𝑛}𝑛⩾1 be an infinite sequence of events. If ∑∞
𝑛=1 ℙ(𝐴𝑛) < ∞, then

ℙ{𝐴𝑛, i.o.} = 1.

Proof.
Note that

ℙ{𝐴𝑛, i.o.} = ℙ

{ ∞⋂
𝑚=1

∞⋃
𝑛=𝑚

𝐴𝑛

}
= lim

𝑚→∞
ℙ

( ∞⋃
𝑛=𝑚

𝐴𝑛

)
= 0 because

∞∑
𝑛=1

ℙ(𝐴𝑛) < ∞. ■
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Examples

Example 22

Consider a sequence of independent events 𝐴1, 𝐴2, . . . where 𝐴𝑛 represents the
event that a fair coin flip comes up heads 𝑛 times in a row. Find ℙ{𝐴𝑛, i.o.}.

Solution.
Since ℙ(𝐴𝑛) = 1

2𝑛 , it follows that

∞∑
𝑛=1

ℙ(𝐴𝑛) = 1 < ∞.

Therefore, by the Borel-Cantelli lemma, ℙ{𝐴𝑛, i.o.} = 0, which means that the probability
that 𝐴𝑛 occurs infinitely often is 0. ■
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Examples

Example 23

Let 𝑋1, 𝑋2, . . . be independent and identically distributed Uniform(0, 1) random vari-
ables. Set 𝑌𝑛 = 𝑋𝑛/𝑛. Show that 𝑌𝑛

𝑎.𝑠.−−→ 0.

Proof.
Note that

ℙ{|𝑌𝑛 − 0| > 𝜀} = ℙ{𝑋2
𝑛 > 𝑛2𝜀2} ⩽ 𝔼[𝑋2

𝑛 ]
𝑛2𝜀2 =

1
3𝑛2𝜀2 , by Markov’s inequality,

and it follows that
∞∑
𝑛=1

ℙ{|𝑌𝑛 − 0| > 𝜀} ⩽ 1
3𝜀2

∞∑
𝑛=1

1
𝑛2 < ∞.

Therefore, ℙ{|𝑌𝑛 − 0| > 𝜀, i.o.} = 0, and thus 𝑌𝑛
𝑎.𝑠.−−→ 0. ■
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Relation between convergence a.s. and in probability

Proposition 24

If 𝑋𝑛
𝑎.𝑠.−−→ 𝑋 , then 𝑋𝑛

𝑝−→ 𝑋 .

Proof.

If 𝑋𝑛
𝑎.𝑠.−−→ 𝑎, then

ℙ

( ∞⋂
𝑚=1

∞⋃
𝑛=𝑚

{|𝑋𝑛 − 𝑋 | > 𝜀}
)
= 0 for any 𝜀 > 0,

which is equivalent to

lim
𝑚→∞

ℙ

( ∞⋃
𝑛=𝑚

{|𝑋𝑛 − 𝑋 | > 𝜀}
)
= 0.
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Relation between convergence a.s. and in probability

However,

ℙ{|𝑋𝑚 − 𝑋 | > 𝜀} ⩽ ℙ

( ∞⋃
𝑛=𝑚

{|𝑋𝑛 − 𝑋 | > 𝜀}
)
,

and therefore,

lim
𝑚→∞

ℙ{|𝑋𝑚 − 𝑋 | > 𝜀} ⩽ lim
𝑚→∞

ℙ

( ∞⋃
𝑛=𝑚

{|𝑋𝑛 − 𝑋 | > 𝜀}
)
= 0,

which implies that 𝑋𝑛
𝑝−→ 𝑋 . ■

Remark

The inverse is not correct. That is, if 𝑋𝑛
𝑝−→ 𝑋 , then it is not necessarily that 𝑋𝑛

𝑎.𝑠.−−→ 𝑋 .
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Examples

Example 25 (Conv. in prob. but not a.s.)

Let 𝑋𝑛 ∼ Bernoulli(1/𝑛) be independent. Then 𝑋𝑛
𝑝−→ 0 but it is not true that 𝑋𝑛

𝑎.𝑠.−−→ 0.

Proof.
For any 𝜀 > 0,

ℙ{|𝑋𝑛 − 0| > 𝜀} = ℙ{𝑋𝑛 = 1} = 1
𝑛
→ 0 as 𝑛 → ∞.

So 𝑋𝑛
𝑝−→ 0. On the other hand, note that with 𝐴𝑛 = {|𝑋𝑛 − 0| > 𝜀},

ℙ({|𝑋𝑛 − 0| > 𝜀, i.o.}𝑐) = ℙ{𝐴𝑐
𝑛, f.o.} = ℙ

( ∞⋃
𝑚=1

∞⋂
𝑛=𝑚

𝐴𝑐
𝑛

)
.
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Examples

For every 𝑚 ⩾ 1, because 𝐴𝑛’s are independent,

ℙ

( ∞⋂
𝑛=𝑚

𝐴𝑐
𝑛

)
=

∞∏
𝑛=𝑚

(
1 − 1

𝑛

)
= 0,

and therefore,

ℙ({|𝑋𝑛 − 0| > 𝜀, i.o.}𝑐) ⩽
∞∑

𝑚=1
ℙ

( ∞⋂
𝑛=𝑚

𝐴𝑐
𝑛

)
= 0,

which implies that

ℙ{|𝑋𝑛 − 0| > 𝜀, i.o.} = 1.

This proves that 𝑋𝑛 does not converge a.s. to 0. ■
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Theorem 26

If 𝑋𝑛
𝑝−→ 𝑋 , then there exists a sequence {𝑛𝑘} of integers increasing to infinity such

that 𝑋𝑛𝑘
𝑎.𝑠.−−→ 𝑋 .

Briefly stated: convergence in probability implies convergence almost surely along a
subsequence.
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Proof.

Because 𝑋𝑛
𝑝−→ 𝑋 , then for any 𝜀1 > 0,

lim
𝑛→∞

ℙ

(
|𝑋𝑛 − 𝑋 | > 𝜀1

)
= 0.

Take 𝜀1 = 2−𝑘, then

lim
𝑛→∞

ℙ

(
|𝑋𝑛 − 𝑋 | > 1

2𝑘

)
= 0, for any 𝑘 ⩾ 1.

Then, for any 𝑘 ⩾ 1, and for 𝜀2,𝑘 = 2−𝑘, there exists 𝑁𝑘 ⩾ 1 such that

ℙ

(
|𝑋𝑛 − 𝑋 | > 1

2𝑘

)
⩽ 𝛿 =

1
2𝑘

, for any 𝑛 ⩾ 𝑁𝑘.
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Choose 𝑛𝑘 = 𝑁𝑘 which was defined as above, and let

𝐸𝑘 = {|𝑋𝑛𝑘 − 𝑋 | > 1
2𝑘

}.

Then, we have
∞∑
𝑘=1

ℙ(𝐸𝑘) ⩽
∞∑
𝑘=1

1
2𝑘

= 1.

For any 𝜀 > 0, define

𝐴𝑘 = {|𝑋𝑛𝑘 − 𝑋 | > 𝜀}.

Then, for 𝑘 > log2(1/𝜀), we have 𝜀 > 2−𝑘, and it follows that 𝐴𝑘 ⊂ 𝐸𝑘.
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Therefore,

∞∑
𝑘=1

ℙ(𝐴𝑘) =
[log2 (1/𝜀) ]∑

𝑘=1
ℙ(𝐴𝑘) +

∑
𝑘=[log2 (1/𝜀) ]+1

ℙ(𝐸𝑘) ⩽ [log2(1/𝜀)] + 1 < ∞.

By the Borel–Cantelli lemma, we have

ℙ(𝐴𝑘 𝑖.𝑜.) = 0,

which implies that 𝑋𝑛𝑘
𝑋−→ almost surely as 𝑘 → ∞.

■
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Convergence in 𝐿𝑝 and convergence a.s.

■ Convergence in 𝐿𝑝 does not imply convergence a.s.

■ Convergence a.s. does not imply convergence in 𝐿𝑝, either.

■ Convergence in probability does not imply convergence in 𝐿𝑝.
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Convergence in 𝐿𝑝 does not imply convergence a.s.
Consider the probability space ([0, 1],ℬ[0, 1],ℙ), where ℙ = 𝜆 is the Lebesgue measure.
Define

𝑋1 = 1[0,1] ,

𝑋2 = 1[0,1/2] , 𝑋3 = 1[1/2,1] ,

𝑋4 = 1[0,1/4] , 𝑋5 = 1[1/4,1/2] , 𝑋6 = 1[1/2,3/4] , 𝑋7 = 1[3/4,1] ,

𝑋8 = 1[0,1/8] , . . .

That is,

𝑋𝑛 = 1[ ( 𝑗−1)/2𝑘, 𝑗/2𝑘 ] ,

where 𝑘 = [log2 𝑛] and 𝑗 = 𝑛 − 2𝑘 + 1.
For example, if 𝑛 = 9, then 𝑘 = [log2 9] = 3, and 𝑗 = 𝑛 − 2𝑘 + 1 = 2, then

𝑋9 = 1[ 1
23 , 2

23 ] .
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Therefore,

𝔼|𝑋𝑛 |𝑝 = ℙ({𝜔 : 𝑗 − 1
2𝑘
⩽ 𝜔 ⩽

𝑗

2𝑘
}) = 1

2𝑘
=

1
2[log2 𝑛] ⩽

2
𝑛
→ 0 as 𝑛 → ∞.

Hence, by definition,

𝑋𝑛
𝐿𝑝−→ 0.

However, for any 𝜔 ∈ [0, 1], and for any 𝑁 ⩾ 1, there exists 𝑛 ⩾ 𝑁 such that

𝑋𝑛(𝜔) = 1.

Then there exists infinitely many 𝑛 such that 𝑋𝑛(𝜔) = 1. Therefore,

𝑋𝑛 ̸→ 0 almost surely.
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Convergence in probability does not implies convergence in 𝐿𝑝

Define

𝑌𝑛 = 𝑛1/𝑝𝑋𝑛.

Then, for any 𝜀 ∈ (0, 1),

ℙ(𝑌𝑛 > 𝜀) ⩽ ℙ(𝑌𝑛 > 0) = ℙ(𝑋𝑛 = 1) ⩽ 2
𝑛
→ 0 as 𝑛 → ∞,

which implies that 𝑌𝑛
𝑝−→ 0.

However,

𝔼[𝑌 𝑝
𝑛 ] = 𝑛ℙ(𝑋𝑛 = 1) = 𝑛

2[log2 𝑛] ⩾ 1.

Therefore,

𝑌𝑛 ̸→ 0 in 𝐿𝑝.
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Convergence a.s. does not imply convergence in 𝐿𝑝

Define

𝑈𝑛 = 𝑛1/𝑝1[0,1/𝑛] .

Then, as 𝑛 → ∞, 𝑈𝑛 → 0 a.s.
However,

𝔼 |𝑋𝑛 |𝑝 = 𝑛 × 1
𝑛
= 1.

Therefore,

𝑋𝑛 ̸→ 0 in 𝐿𝑝.
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Strong law of large numbers

Theorem 27
Let 𝜉, 𝜉1, . . . , 𝜉𝑛 be a sequence of i.i.d. random variables with common mean 𝜇 and
variance 𝜎2. Assume that 𝔼[𝜉4] < ∞. Let 𝑋𝑛 = 𝜉𝑛 be the sample mean. Then,

ℙ{ lim
𝑛→∞

𝑋𝑛 = 𝜇} = 1.

Remark
■ The assumption can be relaxed to 𝔼|𝜉| < ∞.

■ The strong law flips the order of limit and probability.

■ Strong law ≠ deterministic.

■ The strong law asserts that there are a finite number of failures (|𝑋𝑛 − 𝜇 | > 𝜀).
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Multiple-choice Questions

1. (Multiple Choice) The sequence of random variables 𝑋1, 𝑋2, 𝑋3, ... converges almost
surely to a constant 𝑐 if:
A. For all 𝜀 > 0, ℙ(|𝑋𝑛 − 𝑐| > 𝜀) approaches 0 as 𝑛 approaches infinity.

B. For all 𝜀 > 0, ℙ(|𝑋𝑛 − 𝑐| > 𝜀, i.o.) = 0.

C. For all 𝜀 > 0, ℙ(|𝑋𝑛 − 𝑐| ⩽ 𝜀, i.o.) = 1.

D. For all 𝜀 > 0, 𝔼(|𝑋𝑛 − 𝑐| > 𝜀) approaches 0 as 𝑛 approaches infinity.
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Multiple-choice Questions

2. (True/False) The Strong Law of Large Numbers states that the sample average of a
sequence of independent and identically distributed (i.i.d.) random variables with finite
mean 𝜇 converges almost surely to 𝜇.
A. True

B. False
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Multiple-choice Questions

3. (Multiple Choice) Which of the following best describes the difference between the
Weak Law of Large Numbers and the Strong Law of Large Numbers?
A. The Weak Law of Large Numbers applies to sequences of i.i.d. random variables,

while the Strong Law of Large Numbers applies to sequences of dependent
random variables.

B. The Weak Law of Large Numbers pertains to convergence in probability, while the
Strong Law of Large Numbers pertains to almost sure convergence.

C. The Weak Law of Large Numbers pertains to almost sure convergence, while the
Strong Law of Large Numbers pertains to convergence in probability.

D. The Weak Law of Large Numbers applies to sequences of random variables with
finite mean, while the Strong Law of Large Numbers applies to sequences of
random variables with finite variance.
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Multiple-choice Questions

4. (True/False) Almost sure convergence implies convergence in probability, but
convergence in probability does not imply almost sure convergence.
A. True

B. False
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Multiple-choice Questions

5. (Multiple Choice) Given a sequence of i.i.d. random variables 𝑋1, 𝑋2, 𝑋3, ... with finite
mean 𝜇, under which condition does the Strong Law of Large Numbers hold?
A. The random variables have finite variance.

B. The random variables have finite kurtosis.

C. The random variables have a finite second moment.

D. None of the above is necessary.
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Convergence in distribution
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Definition of Convergence in Distribution

Definition 28
■ A sequence of random variables 𝑋1, 𝑋2, ..., 𝑋𝑛 converges in distribution (or in law) to

a random variable 𝑋 if the cumulative distribution function (CDF) of 𝑋𝑛 converges to
the CDF of 𝑋 at all points where 𝐹(𝑥) is continuous.

■ Formally, 𝑋𝑛 converges to X in distribution if lim
𝑛→∞

𝐹𝑛(𝑥) = 𝐹(𝑥) for all x at which 𝐹(𝑥)
is continuous.
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Convergence in Distribution vs. Other Convergence

■ Convergence in probability and almost sure convergence are stronger than
convergence in distribution. That is, if a sequence of random variables converges in
probability or almost surely, it will also converge in distribution.

■ However, the converse is not true: convergence in distribution does not imply
convergence in probability or almost surely.
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Central Limit Theorem

■ The Central Limit Theorem (CLT) is a fundamental theorem in probability theory and
statistics which states that the sum of a large number of independent and identically
distributed (i.i.d.) random variables, each with finite mean and variance, will have a
distribution that is approximately normal.

■ The CLT is an example of convergence in distribution: as the number of random
variables increases, the distribution of the sum (properly normalized) converges to a
normal distribution.
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Theorem 29

If 𝑋𝑛
𝑝−→ 𝑋 , then 𝑋𝑛

𝑑−→ 𝑋 .

Proof.
For any 𝑎 < 𝑏,

𝐹(𝑎) = ℙ{𝑋 ⩽ 𝑎} = ℙ({𝑋 ⩽ 𝑎} ∩ {𝑋𝑛 ⩽ 𝑏}) + ℙ({𝑋 ⩽ 𝑎} ∩ {𝑋𝑛 > 𝑏})
⩽ ℙ{𝑋𝑛 ⩽ 𝑏} + ℙ({𝑋 ⩽ 𝑎} ∩ {𝑋𝑛 > 𝑏}),

and the second term can be bounded by

ℙ({𝑋 ⩽ 𝑎} ∩ {𝑋𝑛 > 𝑏}) ⩽ ℙ{|𝑋𝑛 − 𝑋 | > 𝑏 − 𝑎} → 0.

Therefore, 𝐹(𝑎) ⩽ lim inf𝑛→∞ ℙ{𝑋𝑛 ⩽ 𝑏}. Similarly, lim sup𝑛→∞ ℙ{𝑋𝑛 ⩽ 𝑏} ⩽ 𝐹(𝑎′) if
𝑎′ > 𝑏. If 𝑏 is a continuity point of 𝐹, then as 𝑎 ↑ 𝑏 and 𝑎′ ↓ 𝑏, 𝐹(𝑏) = lim𝑛→∞ ℙ{𝑋𝑛 ⩽ 𝑏}. ■
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Theorem 30
For any constant 𝑎,

𝑋𝑛
𝑝−→ 𝑎 ⇐⇒ 𝑋𝑛

𝑑−→ 𝑎.

Proof.
We only prove the ⇐= part. For any 𝜀 > 0,

ℙ{|𝑋𝑛 − 𝑎| ⩾ 𝜀} = ℙ{𝑋𝑛 ⩾ 𝑎 + 𝜀} + ℙ{𝑋𝑛 ⩽ 𝑎 − 𝜀}

⩽ ℙ{𝑋𝑛 > 𝑎 + 𝜀

2
} + ℙ{𝑋𝑛 ⩽ 𝑎 − 𝜀}

= 1 − 𝐹𝑛(𝑎 +
𝜀

2
) + 𝐹𝑛(𝑎 − 𝜀),

where

𝐹𝑛(𝑎 +
𝜀

2
) → 𝐹(𝑎 + 𝜀

2
) = 1, 𝐹𝑛(𝑎 − 𝜀) → 𝐹(𝑎 − 𝜀) = 0,

and thus ℙ{|𝑋𝑛 − 𝑎| ⩾ 𝜀} → 0. ■
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Classical Central Limit Theorems
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Introduction

■ The law of large numbers:

𝜉𝑛 − 𝜇 =
1
𝑛

𝑛∑
𝑖=1

(𝜉𝑖 − 𝜇) → 0.

■ How close is the convergence?

■ We know that

Var(𝜉𝑛 − 𝜇) = 𝜎2

𝑛
,

where 𝜎2 = Var(𝜉).

■ Consider the normalized variable:

𝑍𝑛 =

√
𝑛(𝜉𝑛 − 𝜇)

𝜎
→?
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Figure: Pictorial illustration of the Central Limit Theorem. Suppose we throw a die and record the face∑𝑛
𝑖=1 𝜉𝑖.
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CLT: i.i.d. random variables

Theorem 31
Let 𝜉, 𝜉1, 𝜉2, . . . be a sequence of i.i.d. random variables with 𝜇 = 𝔼[𝜉] and 𝜎2 = Var(𝜉).
Let

𝑍𝑛 =

√
𝑛(𝜉𝑛 − 𝜇)

𝜎
.

The cdf of 𝑍𝑛 is converging pointwise to the cdf of 𝑁 (0, 1), in other words, for every
𝑥 ∈ ℝ,

ℙ{𝑍𝑛 ⩽ 𝑥} → 𝛷(𝑥) = 1
√

2𝜋

∫ 𝑥

−∞
𝑒−𝑡

2/2𝑑𝑡, as 𝑛 → ∞.

Remark
If 𝜉𝑖 ∼ 𝑁 (𝜇, 𝜎2), then 𝑍𝑛 is exactly a 𝑁 (0, 1) random variable.
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Normal approximation

Let 𝑆𝑛 = 𝜉1 + · · · + 𝜉𝑛. If 𝑛 is large, then the probability ℙ{𝑆𝑛 ⩽ 𝑠} can be approximated by
treating 𝑆𝑛 as if it were normal:
(i) Calculate the mean 𝑛𝜇 and the variance 𝑛𝜎2 of 𝑆𝑛.

(ii) Calculate the normalized value

𝑧 =
𝑠 − 𝑛𝜇
√
𝑛𝜎

.

(iii) Use the approximation:

ℙ{𝑆𝑛 ⩽ 𝑠} ≈ 𝛷(𝑧).
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Examples

Example 32

We load on a plane 100 packages whose weights are independent random variables
that are uniformly distributed between 5 and 50 pounds. What is the probability
that the total weight will exceed 3000 pounds? It is not easy to calculate the cdf
of the total weight and the desired probability, but an approximate answer can be
quickly obtained using the central limit theorem.

Solution.
Let 𝜉𝑖 be the weight of the 𝑖th package for every 𝑖 ⩾ 1, then it follows that 𝜉𝑖 ∼
Uniform(5, 50). Let 𝑆𝑛 = 𝜉1 + · · · + 𝜉𝑛 be the sum of the weights of 𝑛 packages. We
want to calculate ℙ{𝑆100 > 3000}.
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Examples

Solution (Cont’d).
Now, since

𝜇 =
5 + 50

2
= 27.5, 𝜎2 =

(50 − 5)2

12
= 168.75,

we have

𝑧 =
3000 − (100) (27.5)√

(100) (168.75)
= 1.92.

Therefore, by the CLT,

ℙ{𝑆100 > 3000} = 1 − ℙ{𝑆100 ⩽ 3000} ≈ 1 −𝛷(1.92) ≈ 0.274. ■
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Examples

Example 33

We poll 𝑛 voters and record the fraction 𝑀𝑛 of those polled who are in favor of a
particular candidate. If 𝑝 is the fraction of the entire voter population that supports
this candidate, then

𝑀𝑛 =
1
𝑛
(𝜉1 + · · · + 𝜉𝑛),

where {𝜉𝑖} are independent Bernoulli random variables with parameter 𝑝. Then,
𝔼[𝜉𝑖] = 𝑝 and Var(𝜉𝑖) = 𝑝(1 − 𝑝), and it follows that

𝑍𝑛 =

√
𝑛(𝑀𝑛 − 𝜇)

𝜎
=

√
𝑛(𝑀𝑛 − 𝑝)√
𝑝(1 − 𝑝)

.

Therefore, by the CLT,

ℙ{𝑀𝑛 − 𝑝 ⩾ 𝜀} ⩽ 1 −𝛷(2
√
𝑛𝜀).
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Time

de Moivre
棣莫弗

1733

Laplace
拉普拉斯

1812

Lyapunov
李亚普诺夫

1901

Pólya
波利亚

1920

■ 1733: de Moivre used the normal distribution to approximate the distribution of the
number of heads resulting from many tosses of a fair coin.

■ 1812: Laplace approximated the binomial distribution with the normal distribution.

■ 1901: Lyapunov gave a rigorous proof of the central limit theorem.

■ 1920: Pólya referred to the theorem as ”central” due to its importance in probability
theory.
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de Moivre-Laplace approximation to the binomial

■ If 𝑆𝑛 ∼ Binomial(𝑛, 𝑝), then it can be viewed as

𝑆𝑛 = 𝜉1 + · · · + 𝜉𝑛, 𝜉𝑖 ∼ Bernoulli(𝑝).

■ Suppose that we want to calculate

ℙ{𝑘 ⩽ 𝑆𝑛 ⩽ ℓ} ⩽ ℙ{𝑘 − 1
2
⩽ 𝑆𝑛 ⩽ ℓ + 1

2
} ⩽ ℙ{𝑘 − 1 < 𝑆𝑛 < ℓ + 1}

0 01 12 23 34 45 56 6

Improved to
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Theorem 34 (De Moivre-Laplace approximation)

If 𝑆𝑛 ∼ Binomial(𝑛, 𝑝), where 𝑛 is large and 𝑘 ⩽ ℓ are nonnegative integers, then

ℙ{𝑘 ⩽ 𝑆𝑛 ⩽ ℓ} ≈ 𝛷

(
ℓ + 1

2 − 𝑛𝑝√
𝑛𝑝(1 − 𝑝)

)
−𝛷

(
𝑘 − 1

2 − 𝑛𝑝√
𝑛𝑝(1 − 𝑝)

)
.

84



Example 35

Let 𝑆𝑛 ∼ Binomial(36, 0.5). Find ℙ{𝑆𝑛 ⩽ 21}.

Solution.

An exact calculation yields: ℙ{𝑆𝑛 ⩽ 21} =
21∑
𝑘=0

(
36
𝑘

)
(0.5)36 = 0.8785075. The central limit

theorem, without the above refinement, yields:

ℙ{𝑆𝑛 ⩽ 21} ≈ 𝛷

(
21 − (36)(0.5)√
(36)(0.5) (1 − 0.5)

)
= 𝛷(1) ≈ 0.8413.

However, using the refinement,

ℙ{𝑆𝑛 ⩽ 21} ≈ 𝛷

(
21.5 − (36)(0.5)√
(36) (0.5)(1 − 0.5)

)
= 𝛷(1.17) ≈ 0.8789995. ■
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Multiple-choice Questions

1. (Multiple Choice) Consider a sequence of independent and identically distributed (i.i.d.)
random variables 𝑋1, 𝑋2, ..., 𝑋𝑛 with mean 𝜇 and variance 𝜎2. The Central Limit
Theorem (CLT) best applies to:

A.
𝑋1 + 𝑋2 + ... + 𝑋𝑛

𝑛

B.
√
𝑛

(
𝑋1 + 𝑋2 + ... + 𝑋𝑛

𝑛
− 𝜇

)
C.

√
𝑛(𝑋1 − 𝜇)

D. None of the above
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Multiple-choice Questions

2. (True/False) Convergence in distribution implies that the sequence of random variables
converges to the limit in the sense of having the same expected values and variances.
A. True

B. False
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Multiple-choice Questions

3. (Multiple Choice) Which of the following is true about the Central Limit Theorem (CLT)?
A. It states that the sum of a large number of independent and identically distributed

random variables, each with finite mean 𝜇 and variance 𝜎2, will be approximately
normally distributed 𝑁 (𝑛𝜇, 𝑛𝜎2).

B. It applies only to normally distributed random variables.

C. It states that the mean of a large number of independent and identically distributed
random variables, each with finite mean 𝜇 and variance 𝜎2, will be approximately
normally distributed 𝑁 (𝜇, 𝜎2).

D. It requires the random variables to be independent but not identically distributed.
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Multiple-choice Questions

4. (True/False) The Central Limit Theorem ensures that, with a sufficiently large sample
size, the sampling distribution of the sample mean is approximately normally distributed,
regardless of the shape of the population distribution.
A. True

B. False

89



Multiple-choice Questions

5. (Multiple Choice) Convergence in distribution of a sequence of random variables {𝑋𝑛} to
a random variable 𝑋 is defined by:
A. 𝑃(𝑋𝑛 ⩽ 𝑥) → 𝑃(𝑋 ⩽ 𝑥) as 𝑛 → ∞ for every number 𝑥 at which 𝐹(𝑥) is continuous.

B. 𝐸(𝑋𝑛) → 𝐸(𝑋) and Var(𝑋𝑛) → Var(𝑋) as 𝑛 → ∞.

C. 𝑃( |𝑋𝑛 − 𝑋 | > 𝜀) → 0 as 𝑛 → ∞.

D. 𝑃( |𝑋𝑛 − 𝑋 | > 𝜀, i.o.) = 0.
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Further reading

[1] Sheldon M. Ross (谢尔登・M.罗斯).

A first course in probability (概率论基础教程): Chapter 8.

10th edition (原书第十版),机械工业出版社
[2] Stanley H. Chan.

Introduction to Probability for Data Science: Chapter 6.

Michigan Publishing
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