Lecture note 8: Multivariate normal distribution

Foundation of Probability Theory/STA 203

Zhuosong ZHANG

Department of Statistics and Data Science, SUSTech

Fall, 2023

Bivariate normal distribution

Introduction

The bivariate normal distribution is commonly used to model the joint distribution of two random variables with a linear relationship. Here are some real-world examples where the bivariate normal distribution might be a reasonable model:

- Height and weight of adults
- Father and son's heights
- Test scores in two subjects
- We can assume that these variables both have a marginal normal distribution.
- However, there are some correlation between them.

4

- \blacksquare Let *X* be the height (in cm), and *Y* be the weight (in kg).
- \blacksquare What can you see from the marginal distributions of X and Y ?
- Are they independent?

5

老忠实间歇泉(英语:Old Faithful)是一座 位于美国黄石国家公园的间歇泉,为黄石国家 公园第一个被命名的间歇泉。现喷发规律是 80 分钟左右一次。

Let X be the waiting time (in minutes), and let Y be the duration time of the eruptions (in minutes). History data gives the following graph:

Figure: Old Faithful

Questions

7

- Whether X and Y are independent? Are they correlated?
- What is the joint pdf of X and Y ? How about marginal pdfs?
- What is the conditional distribution of Y given that $X = 80$? How about the conditional expectation?

Joint pdf of independent normal variables

■ If $X \sim N(0, 1)$ and $Y \sim N(0, 1)$ are independent, then

$$
f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, \quad f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-y^2/2}.
$$

■ Then the joint pdf is

8

$$
f(x,y) = f_X(x) f_Y(y) = \frac{1}{2\pi} e^{-\frac{x^2}{2} - \frac{y^2}{2}}.
$$

 \blacksquare We say X and Y follow a standard bivariate normal distribution.

Bivariate Normal Distribution

The bivariate normal distribution is a probability distribution that describes the joint distribution of two normally distributed variables.

Definition 1

 X and Y are said to be bivariate normally distributed with means μ_X and μ_Y and variances σ_X^2 and σ_Y^2 respectively, and with correlation coefficient ρ , if the joint pdf of X and Y is given by:

$$
f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_X)^2}{\sigma_X^2} - 2\rho \frac{(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y} + \frac{(y-\mu_Y)^2}{\sigma_Y^2} \right] \right)
$$

Specially, if $\mu_X = \mu_Y = \rho = 0$ and $\sigma_X = \sigma_Y = 1$, then it is said to be a standard bivariate normal distribution.

Z-scores

Definition 2

The z-score of a random variable X is defined as

$$
X^* = \frac{X - \mu}{\sigma},
$$

where $\mu = \mathbb{E}[X]$ and $\sigma^2 = \text{Var}(X)$.

Remark

It can be shown that if $X \sim N(\mu, \sigma^2)$, then

$$
X^* = \frac{X - \mu}{\sigma} \sim N(0, 1).
$$

Distribution of the Z scores

Proposition 3

If X and Y follow the bivariate normal distribution with parameters $(\mu_X, \mu_Y; \sigma_X^2, \sigma_Y^2, \rho)$, then X^* and Y^* follow the bivariate normal distribution with parameters $(0, 0; 1, 1, \rho)$, where

 $\rho = \text{Cor}(X, Y) = \text{Cor}(X^*, Y^*) = \text{Cov}(X^*, Y^*).$

Proof.

Let

$$
x^* = g(x, y) = \frac{x - \mu_X}{\sigma_X}, \quad y^* = h(x, y) = \frac{y - \mu_Y}{\sigma_Y},
$$

then

$$
|J| = \begin{vmatrix} \frac{1}{\sigma_X} & 0 \\ 0 & \frac{1}{\sigma_Y} \end{vmatrix} = \frac{1}{\sigma_X \sigma_Y}.
$$

Then, it follows that

$$
f_{X^*,Y^*}(x^*,y^*) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)}[(x^*)^2 - 2\rho x^*y^* + (y^*)^2]\right).
$$

Linear transformations

Proposition 4

Proof.

Note that the joint pdf of U and V is

$$
f_{U,V}(u,v)=\frac{1}{2\pi}e^{-\frac{u^2}{2}-\frac{v^2}{2}},
$$

and

$$
u = x
$$
, $v = \frac{1}{\sqrt{1 - \rho^2}} (y - \rho x)$,

The Jacobian determinant is given by

$$
|J| = \begin{vmatrix} 1 & 0 \\ \rho & \sqrt{1 - \rho^2} \end{vmatrix} = \sqrt{1 - \rho^2},
$$

and thus, the joint pdf of X and Y is

$$
f_{X,Y}(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left(-\frac{x^2}{2} - \frac{(y-\rho x)^2}{2(1-\rho^2)}\right)
$$

■

 390

15

Marginal distributions

Proposition 5

If X and Y follow the bivariate normal distribution with parameters $(\mu_X, \mu_Y; \sigma_X^2, \sigma_Y^2, \rho)$, then the marginal distributions of X and Y are given by

$$
X \sim N(\mu_X, \sigma_X^2)
$$
, and $Y \sim N(\mu_Y, \sigma_Y^2)$,

respectively.

Remark

It follows that

$$
\mathbb{E}[X] = \mu_X, \quad \text{Var}(X) = \sigma_X^2, \quad \mathbb{E}[Y] = \mu_Y, \quad \text{Var}(Y) = \sigma_Y^2.
$$

As $Cor(X, Y) = \rho$, we have

$$
Cov(X,Y)=\rho\sigma_X\sigma_Y.
$$

$$
\mathfrak{d} \in \mathfrak{S}
$$

Proof.

We only show for the case where $\mu_X = \mu_Y = 0$ and $\sigma_X = \sigma_Y = 1$. In this case,

$$
f_X(x) = \int_{-\infty}^{\infty} \frac{1}{2\pi \sqrt{1 - \rho^2}} \exp\left(-\frac{x^2}{2} - \frac{(y - \rho x)^2}{2(1 - \rho^2)}\right) dy
$$

= $\frac{1}{\sqrt{2\pi}} e^{-x^2/2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi (1 - \rho^2)}} \exp\left(-\frac{(y - \rho x)^2}{2(1 - \rho^2)}\right) dy$
= $\frac{1}{\sqrt{2\pi}} e^{-x^2/2}.$

Conditional distribution

Proposition 6

If X and Y follow the bivariate normal distribution with parameters $(\mu_X, \mu_Y; \sigma_X^2, \sigma_Y^2, \rho)$, then

$$
Y|X = x \sim N\left(\mu_Y + \frac{\rho \sigma_Y}{\sigma_X}(x - \mu_X), (1 - \rho^2)\sigma_Y^2\right),\,
$$

or, equivalently,

$$
Y^*|X^* = x^* \sim N(\rho x^*, 1 - \rho^2),
$$

where (X^*, Y^*) is the z-score of (X, Y) . Moreover,

$$
\mathbb{E}[Y|X=x] = \mu_Y + \frac{\rho \sigma_Y}{\sigma_X}(x - \mu_X), \quad \text{Var}(Y|X=x) = (1 - \rho^2)\sigma_Y^2.
$$

Linear regression

- **■** Usually, the joint distribution of (X, Y) is unknown.
- The regression function

$$
h(x) = \mathbb{E}[Y|X = x]
$$

is also unknown.

■ However, if we assume that (X, Y) is a bivariate normal random vector, then

$$
h(x) = \mu_Y + \rho \frac{\sigma_Y}{\sigma_X}(x - \mu_X) = b_0 + b_1 x,
$$

where

$$
b_0 = \mu_Y - b_1 \mu_X, \quad b_1 = \rho \frac{\sigma_Y}{\sigma_X}.
$$

Example 7

Assume that the height and weight of a randomly chosen adult, X and Y , follow a bivariate normal distribution with parameters

$$
\mu_X = 168.84, \mu_Y = 82.05; \sigma_X^2 = 101.74, \sigma_Y^2 = 448.84, \rho = 0.45.
$$

Find (a) $\mathbb{P}{160 < X < 180}$. (b) $\mathbb{E}[Y|X = 170]$. (c) $\text{Var}(Y|X = 180)$.

Solution.

(a) As $X \sim N(168.84, 101.74)$, then $X^* = \frac{X - 168.84}{\sqrt{101.74}} \sim N(0, 1)$, and hence

$$
\mathbb{P}{160 < X < 180} = \mathbb{P}\left{\frac{160 - 168.84}{\sqrt{101.74}} < X^* < \frac{180 - 168.84}{\sqrt{101.74}}\right}
$$

= $\mathbb{P}{-0.876 < X^* < 1.106} \approx 0.675$.

(b) We have

$$
\mathbb{E}[Y|X=170] = 82.05 + \frac{(0.45)(\sqrt{448.84})}{\sqrt{101.74}}(170 - 168.84) = 83.147.
$$

(c) We have

$$
Var[Y|X = 180] = (1 - 0.452)(448.84) = 358.28.
$$

Actually, we can also obtain

$$
Y|X = 170 \sim N(83.147, 358.28).
$$

Proposition 8 (Independence)

If X and Y are bivariate normal and uncorrelated, then they are independent.

Example 9

If X and Y follow the bivariate normal distribution with parameters $(\mu_X, \mu_Y; \sigma_X^2, \sigma_Y^2, \rho)$, find the joint distribution of X and $W = Y - \frac{\rho \sigma_Y}{\sigma_Y}$ $\frac{\partial u}{\partial x}X$. Whether they are independent?

Proposition 10 (Linear combinations of X and Y)

Random variables X and Y follow the bivariate normal distribution with parameters $(\mu_X, \mu_Y; \sigma_X^2, \sigma_Y^2, \rho)$, if and only if for any $a, b \in \mathbb{R}$,

 $aX + bY \sim N(a\mu_X + b\mu_Y, a^2\sigma_X^2 + 2ab\rho\sigma_X\sigma_Y + b^2\sigma_Y^2).$

Example 11

Let X and Y be jointly normal random variables with parameters $\mu_X = 1, \sigma_X^2 = 1, \mu_Y =$ $0, \sigma_Y^2 = 4$, and $\rho = 1/2$. Find (a) $\mathbb{P}\{2X + Y \le 3\}$, (b) $Cov(X + Y, 2X - Y)$, and (c) $\mathbb{P}\{\overline{Y} > 1 | X = 2\}.$

Solution.

(a) Since X and Y are jointly normal, then $2X + Y \sim N(2\mu_X + \mu_Y, 4\sigma_X^2 + 2\rho(2\sigma_X)\sigma_Y + \sigma_Y^2) =$ $N(2, 12)$. Therefore,

$$
\mathbb{P}\{V \le 3\} = \mathbb{P}\left\{V^* \le \frac{3-2}{\sqrt{12}}\right\} \approx \Phi(0.2887) \approx 0.6136.
$$

(b) Note that $Cov(X, Y) = \rho \sigma_X \sigma_Y = 1$. Therefore,

$$
Cov(X + Y, 2X - Y) = 2Var(X) + 2Cov(X, Y) - Cov(X, Y) - Var(Y) = -1.
$$

Solution (Cont'd).

(c) As

$$
\mathbb{E}[Y|X=2] = \mu_Y + \rho \frac{\sigma_Y}{\sigma_X}(2 - \mu_X) = 1, \quad \text{Var}(Y|X=2) = (1 - \rho^2)\sigma_Y^2 = 3,
$$

it follows that $Y | X = 2 \sim N(1, 3)$, and therefore,

$$
\mathbb{P}\{Y > 1 | X = 2\} = 1 - \Phi\left(\frac{1 - 1}{\sqrt{3}}\right) = 0.5.
$$

Notice!

If X and Y are jointly normal, then each random variable X and Y is normal. However, the converse is not true.

Example 12

Let $X \sim N(0, 1)$ and

$$
W = \begin{cases} 1 & \text{with probability } 1/2\\ -1 & \text{with probability } 1/2 \end{cases}
$$

be independent random variables. Let $Y = WX$. Find the pdf of Y . Does (X, Y) bivariate normal distributed? Why? Or why not?

By symmetry of $N(0, 1)$, we have $-X \sim N(0, 1)$. Therefore,

$$
\mathbb{P}{Y \le y} = \mathbb{P}{Y \le y|W = -1} \mathbb{P}{W = -1} + \mathbb{P}{Y \le y|W = 1} \mathbb{P}{W = 1}
$$

= $\frac{1}{2} \mathbb{P}{X \le y} + \frac{1}{2} \mathbb{P}{-X \le y}$
= $\frac{1}{2} \Phi(y) + \frac{1}{2} \Phi(y) = \Phi(y)$.

Hence, $Y \sim N(0, 1)$.

However, X and Y are not jointly normal, because $Z = X + Y$ has the following form:

$$
Z = \begin{cases} 2X & \text{if } W = 1 \\ 0 & \text{if } W = -1. \end{cases}
$$

Therefore, if $z\geqslant 0$,

$$
\mathbb{P}\{Z \le z\} = \mathbb{P}\{Z \le z|W=1\} \mathbb{P}\{W=1\} + \mathbb{P}\{Z \le z|W=-1\} \mathbb{P}\{W=-1\}
$$

$$
= \frac{1}{2} \mathbb{P}\{X \le \frac{z}{2}\} + \frac{1}{2} = \frac{1}{2}(1 + \Phi(\frac{z}{2})),
$$

while if $z < 0$,

$$
\mathbb{P}\{Z \le z\} = \frac{1}{2}\,\mathbb{P}\{X \le \frac{z}{2}\} = \frac{1}{2}\Phi\left(\frac{z}{2}\right).
$$

This example illustrates that although X and Y are normally distributed, it is possible that their sum Z is not normally distributed, which further implies that X and Y are not jointly normal. ■

Some important properties of the bivariate normal distribution include:

- **The marginal distributions of X and Y are themselves normally distributed.**
- **The conditional distribution of X given** $Y = y$ **and the conditional distribution of Y given** $X = x$ are both normally distributed with means and variances that depend on y and x respectively.
- **•** The conditional expectation of X given $Y = y$ and the conditional expectation of Y given $X = x$ are both linear functions of y and x respectively.

Multivariate normal distribution

The multivariate normal distribution is a probability distribution that describes the joint distribution of p normally distributed variables.

Multivariate Normal Distribution

Definition 13

If $\mathbf{X} = (X_1, X_2, \ldots, X_p)$ is a *p*-dimensional random vector with mean vector μ and covariance matrix *Σ*, then the pdf of multivariate normal distribution is given by:

$$
f_{\boldsymbol{X}}(\boldsymbol{x}) = \frac{1}{(2\pi)^{p/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}-\boldsymbol{\mu})\right),\,
$$

and we denote $X \sim N(\mu, \Sigma)$. Here,

$$
\boldsymbol{\mu} = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_p \end{pmatrix} \in \mathbb{R}^p, \quad \boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{11} & \dots & \sigma_{1p} \\ \vdots & \ddots & \vdots \\ \sigma_{p1} & \dots & \sigma_{pp} \end{pmatrix} \in \mathbb{R}^{p \times p},
$$

and *Σ* is a positive definite matrix. The symbol |*Σ*| is the determinant of *Σ*.

Standard MND

Definition 14

Specially, if $\mu = 0$, and $\mathbf{\Sigma} = I_p$, then we say X follows a standard multivariate normal $\textsf{distribution if } \boldsymbol{X} \sim N(\boldsymbol{0}, \boldsymbol{I}_p).$

Some important properties of the multivariate normal distribution include:

- Any linear combination of the components of X is also normally distributed.
- \blacksquare The marginal distributions of any subset of components of X are themselves multivariate normal.
- \blacksquare The conditional distribution of any subset of components of X given the remaining components is also multivariate normal.
- \blacksquare The conditional expectation of any subset of components of X given the remaining components is a linear function of the remaining components.

Proposition 15

We have

A 方升技大学

Proof.

Since *Σ >* 0, it follows that a non-singular matrix *L* such that

$$
\Sigma = LL^T, \quad |L| = |\Sigma|^{1/2}.
$$

Consider the transformation

$$
\boldsymbol{y} = \boldsymbol{L}^{-1}(\boldsymbol{x} - \boldsymbol{\mu}).
$$

Then,

$$
x = Ly + \mu,
$$

Therefore,

$$
(\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) = \boldsymbol{y}^T \boldsymbol{y}.
$$

■

Moment generating function of $N(\mu, \Sigma)$

Theorem 16

The moment generating function of $N(\mu, \Sigma)$ is given by

$$
M(\boldsymbol{t}) = \exp\biggl\{\boldsymbol{\mu}^T \boldsymbol{t} + \frac{1}{2} \boldsymbol{t}^T \boldsymbol{\Sigma} \boldsymbol{t} \biggr\}, \quad \boldsymbol{t} \in \mathbb{R}^p.
$$

Another definition of $N(\mu, \Sigma)$

Definition 17

For $\mu\in\mathbb{R}^p,$ and $\Sigma\in\mathbb{R}^{p\times p}$ is a non-negative definite matrix. Then X is called to follow a multivariate normal distribution if its moment generating function is

$$
M(t) = \exp\left\{ \boldsymbol{\mu}^T t + \frac{1}{2} \boldsymbol{t}^T \boldsymbol{\varSigma} \boldsymbol{t} \right\}.
$$

Remark

Here, Σ may be degenerate, say, rank(Σ) < p, or $|\Sigma| = 0$. In this case, we say X follows a degenerate normal distribution, or singular normal distribution.

Theorem 18

Any subvector of *X*, say,

$$
\widetilde{X}=(X_{k_1},\ldots,X_{k_r})^T,\quad r\leq p,
$$

also follows a normal distribution $N(\widetilde{\boldsymbol{\mu}},\widetilde{\boldsymbol{\Sigma}})$, where

$$
\widetilde{\boldsymbol{\mu}} = \begin{pmatrix} \mu_{k_1} \\ \vdots \\ \mu_{k_r} \end{pmatrix}, \quad \widetilde{\boldsymbol{\Sigma}} = \begin{pmatrix} \sigma_{k_1,k_1} & \dots & \sigma_{k_1,k_r} \\ \vdots & \ddots & \vdots \\ \sigma_{k_r,k_1} & \dots & \sigma_{k_r,k_r} \end{pmatrix}
$$

Remark

The marginal distribution of X_j is $N(\mu_j, \sigma_{jj})$. The marginal distribution of (X_j, X_k) is

$$
N\left(\begin{pmatrix} \mu_j \\ \mu_k \end{pmatrix}, \begin{pmatrix} \sigma_{jj} & \sigma_{jk} \\ \sigma_{jk} & \sigma_{kk} \end{pmatrix}\right).
$$

Independence

Theorem 20

Random variables X_1, X_2, \ldots, X_p are independent, if and only if $\sigma_{jk} = 0$ for all $j \neq k$. Generally, if \boldsymbol{X} = $(\boldsymbol{X}_{1},\boldsymbol{X}_{2})$, where \boldsymbol{X}_{1} and \boldsymbol{X}_{2} are two subvectors of \boldsymbol{X} , and let

$$
\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix},
$$

where *Σ*¹¹ and *Σ*²² are the covariance matrices of *X*¹ and *X*2, respectively, and

$$
\Sigma_{12} = \mathbb{E}[(X_1 - \mu_1)(X_2 - \mu_2)^T].
$$

Then, X_1 and X_2 are independent if and only if $\Sigma_{12} = 0$.

Example 21
\nAssume that
$$
\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}
$$
 follows $N \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 4 & 0 & 2 \\ 0 & 1 & -1 \\ 2 & -1 & 3 \end{pmatrix}$.
\nFind
\n(a) The distributions of X_1, X_2 and X_3 .
\n(b) The distribution of $\begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$.
\n(c) Whether X_1 and X_2 are independent?
\n(d) Whether X_1 and $(X_2, X_3)^T$ are independent?

Linear transformation

■ Let $X \in \mathbb{R}^p$ be any random vector (not necessarily normal), satisfying

$$
\mathbb{E}[X] = \mu, \text{Cov}(X) = \Sigma.
$$

Let $\boldsymbol{a} = (a_1, a_2, \dots, a_p)^T$. Consider the linear transformation

$$
Y = \sum_{j=1}^p a_j X_j = \boldsymbol{a}^T \boldsymbol{X}.
$$

■ It follows that

$$
\mathbb{E}[Y] = \sum_{j=1}^p a_j \mu_j = a^T \mu.
$$

■ Moreover,

$$
\text{Var}(Y) = \sum_{j=1}^p \sum_{k=1}^p a_j a_k \sigma_{jk} = \boldsymbol{a}^T \boldsymbol{\Sigma} \boldsymbol{a}.
$$

Linear transformation of $N(\mu, \Sigma)$

Theorem 22

 $\hat{\bm{X}} \sim N(\bm{\mu}, \bm{\Sigma})$ if and only if

$$
a^T X \sim N \left(\sum_{j=1}^p a_j \mu_j, \sum_{j=1}^p \sum_{k=1}^p a_j a_k \sigma_{jk} \right)
$$
 for

for any $a \in \mathbb{R}^p$.

Property of transformation of $N(\mu, \Sigma)$

Theorem 23

If $\boldsymbol{X}\sim N(\boldsymbol{\mu},\boldsymbol{\varSigma})$, then for any $\boldsymbol{C}\in\mathbb{R}^{r\times p}$,

 $CX \sim N(C\mu, C\Sigma C^T)$ *.*

Theorem 24

If $X \sim N(\mu, \Sigma)$, then there exists a orthogonal transformation U such that each component of *UX* is independent of each other. More specifically,

$$
UX \sim N(U\mu, \Lambda),
$$

where

$$
\boldsymbol{\Lambda} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_p \end{pmatrix}
$$

and λ_j 's are the eigenvalues of $\boldsymbol{\varSigma}.$

Example 25

Assume that
$$
\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}
$$
 follows $N \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 4 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix}$.
Find

Find

(a) the distribution of $X_1 - 2X_2 + X_3$;

- (b) the joint distribution of $X_1 X_2 + X_3$ and $3X_1 + X_2 2X_3$;
- (c) an orthogonal matrix *U* such that *UX* has independent components.

Solution.
\n(a) Let
$$
Y = a^T X
$$
, where $a = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$, then $Y = X_1 - 2X_2 + X_3$. Note that
\n
$$
a^T \mu = \begin{pmatrix} 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} = 3, \quad a^T \Sigma a = \begin{pmatrix} 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} 4 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = 15.
$$

The distribution of Y is $N(3, 15)$.

(b) Let
$$
a_1 = (1, -1, 1)^T
$$
 and $a_2 = (3, 1, -2)$, and let

$$
A = \begin{pmatrix} 1 & -1 & 1 \\ 3 & 1 & -2 \end{pmatrix}
$$

Then,

$$
A X = \begin{pmatrix} X_1 - 2X_2 + X_3 \\ 3X_1 + X_2 - 2X_3 \end{pmatrix}
$$

Note that

$$
A\mu = \begin{pmatrix} 1 & -1 & 1 \\ 3 & 1 & -2 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 4 \\ 6 \end{pmatrix},
$$

$$
A\Sigma A^{T} = \begin{pmatrix} 1 & -1 & 1 \\ 3 & 1 & -2 \end{pmatrix} \begin{pmatrix} 4 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ -1 & 1 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} 8 & 6 \\ 6 & 45 \end{pmatrix}.
$$

52

Solution.

(c) The eigenvalues of *Σ* are 4*,* 2 and 0, and the eigenvectors are

$$
\mathbf{u}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{u}_2 = \begin{pmatrix} 0 \\ -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix}, \quad \mathbf{u}_3 = \begin{pmatrix} 0 \\ \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix}
$$

Then, with

$$
U = (u_1, u_2, u_3)^T, A = \text{diag}(4, 2, 0).
$$

we have $\boldsymbol{\Sigma} = \boldsymbol{U}^T \boldsymbol{\Lambda} \boldsymbol{U}$. As a consequence,

$$
Cov(UX) = U\Sigma U^{T} = \Lambda.
$$

Chi-squared distribution

Theorem 26

If $\overline{X} \sim N_p(\mu, \Sigma)$ where $|\Sigma| > 0$, then

$$
(\mathbf{X} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu}) \sim \chi_p^2.
$$

Conditional distribution

Theorem 27
If
$$
X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}
$$
 follows a *p*-variable normal distribution $N(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix})$, then

$$
X_2|X_1 \sim N(\mu_2 + \Sigma_{21} \Sigma_{11}^{-1} (X_1 - \mu_1), \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}).
$$

Example 28
\nLet
\n
$$
X \sim N \begin{bmatrix} 2 \\ 5 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 9 & 0 & 3 & 3 \\ 0 & 1 & -1 & 2 \\ 3 & -1 & 6 & -3 \\ 3 & 2 & -3 & 7 \end{bmatrix}.
$$

\nLet
\n $Y = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}, \quad Z = \begin{bmatrix} X_3 \\ X_4 \end{bmatrix}$

Find the distribution of $Y|Z = z$.

Solution.

Note that

$$
\boldsymbol{\mu}_{Y} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \boldsymbol{\mu}_{Z} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}, \quad \boldsymbol{\Sigma}_{YY} = \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix}, \quad \boldsymbol{\Sigma}_{ZZ} = \begin{pmatrix} 6 & -3 \\ -3 & 7 \end{pmatrix}, \quad \boldsymbol{\Sigma}_{YZ} = \begin{pmatrix} 3 & 3 \\ -1 & 2 \end{pmatrix} = \boldsymbol{\Sigma}_{ZY}^T.
$$

Then,

$$
\mathbb{E}[Y|Z=z] = \mu_Y + \Sigma_{YZ} \Sigma_{ZZ}^{-1} (z - \mu_X)
$$

= $\binom{2}{5} + \binom{3}{-1} \frac{3}{2} \binom{6}{-3}^{-1} \binom{z_1+2}{z_2-1}$
= $\binom{3}{\frac{14}{3} - \frac{1}{33}z_1 + \frac{9}{11}z_2}$.

$$
Cov(\boldsymbol{Y}|\boldsymbol{Z}=\boldsymbol{z}) = \boldsymbol{\Sigma}_{YY} - \boldsymbol{\Sigma}_{YZ}\boldsymbol{\Sigma}_{ZZ}^{-1}\boldsymbol{\Sigma}_{ZY} = \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 3 & 3 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 6 & -3 \\ -3 & 7 \end{pmatrix}^{-1} \begin{pmatrix} 3 & -1 \\ 3 & 2 \end{pmatrix} = \frac{1}{33} \begin{pmatrix} 126 & -24 \\ -24 & 14 \end{pmatrix}.
$$

(•) 有方种技大学

■

Theorem 29

Let X_1, \ldots, X_n be i.i.d. $N(\mu, \sigma^2)$ variables. Let

$$
\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad \hat{\sigma}_n^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2.
$$

Then,

(i) \bar{X} and $\hat{\sigma}_n^2$ are independent;

(ii)
$$
\bar{X} \sim N(\mu, \sigma^2/n)
$$
;

(iii) $(n-1)\hat{\sigma}_n^2/\sigma^2 \sim \chi_{n-1}^2$.

Further reading

[1] Sheldon M. Ross (谢尔登·M. 罗斯). A first course in probability (概率论基础教程): Chapter 6. 10th edition (原书第十版), 机械工业出版社 [2] 李贤平.

概率论基础: 第四章第六节.

第三版, 高等教育出版社