
Lecture note 8: Multivariate normal distribution
Foundation of Probability Theory/STA 203

Zhuosong ZHANG

Department of Statistics and Data Science, SUSTech

Fall, 2023



Bivariate normal distribution
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Introduction

The bivariate normal distribution is commonly used to model the joint distribution of two
random variables with a linear relationship. Here are some real-world examples where the
bivariate normal distribution might be a reasonable model:

■ Height and weight of adults

■ Father and son’s heights

■ Test scores in two subjects

■ We can assume that these variables both have a marginal normal distribution.

■ However, there are some correlation between them.
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Figure: This is survey data collected by the US National Center for Health Statistics (NCHS)
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■ Let 𝑋 be the height (in cm), and 𝑌 be the weight (in kg).

■ What can you see from the marginal distributions of 𝑋 and 𝑌?

■ Are they independent?
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老忠实间歇泉（英语：Old Faithful）是一座
位于美国黄石国家公园的间歇泉，为黄石国家
公园第一个被命名的间歇泉。现喷发规律是
80 分钟左右一次。
Let 𝑋 be the waiting time (in minutes), and
let 𝑌 be the duration time of the eruptions
(in minutes). History data gives the
following graph:
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Figure: Old Faithful
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Questions

■ Whether 𝑋 and 𝑌 are independent? Are they correlated?

■ What is the joint pdf of 𝑋 and 𝑌? How about marginal pdfs?

■ What is the conditional distribution of 𝑌 given that 𝑋 = 80? How about the conditional
expectation?
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Joint pdf of independent normal variables

■ If 𝑋 ∼ 𝑁 (0, 1) and 𝑌 ∼ 𝑁 (0, 1) are independent, then

𝑓𝑋 (𝑥) =
1

√
2𝜋

𝑒−𝑥2/2, 𝑓𝑌 (𝑦) =
1

√
2𝜋

𝑒−𝑦
2/2.

■ Then the joint pdf is

𝑓 (𝑥, 𝑦) = 𝑓𝑋 (𝑥) 𝑓𝑌 (𝑦) =
1

2𝜋
𝑒−

𝑥2
2 − 𝑦2

2 .

■ We say 𝑋 and 𝑌 follow a standard bivariate normal distribution.
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A figure

𝑥 𝑦

𝑓𝑋,𝑌 (𝑥, 𝑦)

9



Bivariate Normal Distribution

The bivariate normal distribution is a probability distribution that describes the joint
distribution of two normally distributed variables.

Definition 1
𝑋 and 𝑌 are said to be bivariate normally distributed with means 𝜇𝑋 and 𝜇𝑌 and variances
𝜎2
𝑋 and 𝜎2

𝑌 respectively, and with correlation coefficient 𝜌, if the joint pdf of 𝑋 and 𝑌 is given
by:

𝑓𝑋,𝑌 (𝑥, 𝑦)

=
1

2𝜋𝜎𝑋𝜎𝑌
√

1 − 𝜌2
exp

(
− 1

2(1 − 𝜌2)

[
(𝑥 − 𝜇𝑋 )2

𝜎2
𝑋

− 2𝜌 (𝑥 − 𝜇𝑋 ) (𝑦 − 𝜇𝑌 )
𝜎𝑋𝜎𝑌

+ (𝑦 − 𝜇𝑌 )2

𝜎2
𝑌

])
Specially, if 𝜇𝑋 = 𝜇𝑌 = 𝜌 = 0 and 𝜎𝑋 = 𝜎𝑌 = 1, then it is said to be a standard bivariate
normal distribution.

10



Z-scores

Definition 2
The z-score of a random variable 𝑋 is defined as

𝑋∗ =
𝑋 − 𝜇

𝜎
,

where 𝜇 = 𝔼[𝑋] and 𝜎2 = Var(𝑋).

Remark
It can be shown that if 𝑋 ∼ 𝑁 (𝜇, 𝜎2), then

𝑋∗ =
𝑋 − 𝜇

𝜎
∼ 𝑁 (0, 1).
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Distribution of the Z scores

Proposition 3

If 𝑋 and 𝑌 follow the bivariate
normal distribution with parameters
(𝜇𝑋 , 𝜇𝑌 ; 𝜎2

𝑋 , 𝜎
2
𝑌 , 𝜌), then 𝑋∗ and 𝑌 ∗ follow

the bivariate normal distribution with pa-
rameters (0, 0; 1, 1, 𝜌), where

𝜌 = Cor(𝑋, 𝑌 ) = Cor(𝑋∗, 𝑌 ∗) = Cov(𝑋∗, 𝑌 ∗).
−2
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Proof.
Let

𝑥∗ = 𝑔(𝑥, 𝑦) = 𝑥 − 𝜇𝑋

𝜎𝑋
, 𝑦∗ = ℎ(𝑥, 𝑦) = 𝑦 − 𝜇𝑌

𝜎𝑌
,

then

|𝐽 | =
���� 1
𝜎𝑋

0
0 1

𝜎𝑌

���� = 1
𝜎𝑋𝜎𝑌

.

Then, it follows that

𝑓𝑋∗,𝑌∗ (𝑥∗, 𝑦∗) = 1
2𝜋

√
1 − 𝜌2

exp
(
− 1

2(1 − 𝜌2) [(𝑥
∗)2 − 2𝜌𝑥∗𝑦∗ + (𝑦∗)2]

)
. ■
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Linear transformations

Proposition 4

If 𝑈 ∼ 𝑁 (0, 1), 𝑉 ∼ 𝑁 (0, 1) are independent random variables and 𝜌 ∈ [−1, 1], and let

𝑋 = 𝑈, 𝑌 = 𝜌𝑈 +
√

1 − 𝜌2𝑉,

then (𝑋, 𝑌 ) follows the bivariate normal distribution with parameters (0, 0; 1, 1, 𝜌).

(𝑢, 𝑣) 𝜌 = −1 𝜌 = −0.866 𝜌 = −0.5 𝜌 = 0 𝜌 = 0.5 𝜌 = 0.866 𝜌 = 1
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Proof.
Note that the joint pdf of 𝑈 and 𝑉 is

𝑓𝑈,𝑉 (𝑢, 𝑣) =
1

2𝜋
𝑒−

𝑢2
2 − 𝑣2

2 ,

and

𝑢 = 𝑥, 𝑣 =
1√

1 − 𝜌2
(𝑦 − 𝜌𝑥),

The Jacobian determinant is given by

|𝐽 | =
����1 0
𝜌

√
1 − 𝜌2

���� = √
1 − 𝜌2,

and thus, the joint pdf of 𝑋 and 𝑌 is

𝑓𝑋,𝑌 (𝑥, 𝑦) =
1

2𝜋
√

1 − 𝜌2
exp

(
− 𝑥2

2
− (𝑦 − 𝜌𝑥)2

2(1 − 𝜌2)

)
■
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Marginal distributions

Proposition 5

If 𝑋 and 𝑌 follow the bivariate normal distribution with parameters (𝜇𝑋 , 𝜇𝑌 ; 𝜎2
𝑋 , 𝜎

2
𝑌 , 𝜌),

then the marginal distributions of 𝑋 and 𝑌 are given by

𝑋 ∼ 𝑁 (𝜇𝑋 , 𝜎
2
𝑋 ), and 𝑌 ∼ 𝑁 (𝜇𝑌 , 𝜎

2
𝑌 ),

respectively.

Remark
It follows that

𝔼[𝑋] = 𝜇𝑋 , Var(𝑋) = 𝜎2
𝑋 , 𝔼[𝑌 ] = 𝜇𝑌 , Var(𝑌 ) = 𝜎2

𝑌 .

As Cor(𝑋, 𝑌 ) = 𝜌, we have

Cov(𝑋, 𝑌 ) = 𝜌𝜎𝑋𝜎𝑌 .16



Proof.
We only show for the case where 𝜇𝑋 = 𝜇𝑌 = 0 and 𝜎𝑋 = 𝜎𝑌 = 1. In this case,

𝑓𝑋 (𝑥) =
∫ ∞

−∞

1
2𝜋

√
1 − 𝜌2

exp
(
− 𝑥2

2
− (𝑦 − 𝜌𝑥)2

2(1 − 𝜌2)

)
𝑑𝑦

=
1

√
2𝜋

𝑒−𝑥2/2
∫ ∞

−∞

1√
2𝜋(1 − 𝜌2)

exp
(
− (𝑦 − 𝜌𝑥)2

2(1 − 𝜌2)

)
𝑑𝑦

=
1

√
2𝜋

𝑒−𝑥2/2. ■
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Conditional distribution

Proposition 6

If 𝑋 and 𝑌 follow the bivariate normal distribution with parameters (𝜇𝑋 , 𝜇𝑌 ; 𝜎2
𝑋 , 𝜎

2
𝑌 , 𝜌),

then

𝑌 |𝑋 = 𝑥 ∼ 𝑁

(
𝜇𝑌 + 𝜌𝜎𝑌

𝜎𝑋
(𝑥 − 𝜇𝑋 ), (1 − 𝜌2)𝜎2

𝑌

)
,

or, equivalently,

𝑌 ∗ |𝑋∗ = 𝑥∗ ∼ 𝑁 (𝜌𝑥∗, 1 − 𝜌2),

where (𝑋∗, 𝑌 ∗) is the z-score of (𝑋, 𝑌 ).
Moreover,

𝔼[𝑌 |𝑋 = 𝑥] = 𝜇𝑌 + 𝜌𝜎𝑌
𝜎𝑋

(𝑥 − 𝜇𝑋 ), Var(𝑌 |𝑋 = 𝑥) = (1 − 𝜌2)𝜎2
𝑌 .
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Linear regression

■ Usually, the joint distribution of (𝑋, 𝑌 ) is unknown.

■ The regression function

ℎ(𝑥) = 𝔼[𝑌 |𝑋 = 𝑥]

is also unknown.

■ However, if we assume that (𝑋, 𝑌 ) is a bivariate normal random vector, then

ℎ(𝑥) = 𝜇𝑌 + 𝜌
𝜎𝑌
𝜎𝑋

(𝑥 − 𝜇𝑋 ) = 𝑏0 + 𝑏1𝑥,

where

𝑏0 = 𝜇𝑌 − 𝑏1𝜇𝑋 , 𝑏1 = 𝜌
𝜎𝑌
𝜎𝑋

.
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Examples

Example 7

Assume that the height and weight of a randomly chosen adult, 𝑋 and 𝑌 , follow a
bivariate normal distribution with parameters

𝜇𝑋 = 168.84, 𝜇𝑌 = 82.05; 𝜎2
𝑋 = 101.74, 𝜎2

𝑌 = 448.84, 𝜌 = 0.45.

Find (a) ℙ{160 < 𝑋 < 180}. (b) 𝔼[𝑌 |𝑋 = 170]. (c) Var(𝑌 |𝑋 = 180).
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Examples

Solution.
(a) As 𝑋 ∼ 𝑁 (168.84, 101.74), then 𝑋∗ = 𝑋−168.84√

101.74
∼ 𝑁 (0, 1), and hence

ℙ{160 < 𝑋 < 180} = ℙ

{
160 − 168.84
√

101.74
< 𝑋∗ <

180 − 168.84
√

101.74

}
= ℙ{−0.876 < 𝑋∗ < 1.106} ≈ 0.675.

21



Examples

(b) We have

𝔼[𝑌 |𝑋 = 170] = 82.05 + (0.45) (
√

448.84)
√

101.74
(170 − 168.84) = 83.147.

(c) We have

Var[𝑌 |𝑋 = 180] = (1 − 0.452) (448.84) = 358.28.

Actually, we can also obtain

𝑌 |𝑋 = 170 ∼ 𝑁 (83.147, 358.28). ■
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Properties

Proposition 8 (Independence)

If 𝑋 and 𝑌 are bivariate normal and uncorrelated, then they are independent.

Example 9

If 𝑋 and 𝑌 follow the bivariate normal distribution with parameters (𝜇𝑋 , 𝜇𝑌 ; 𝜎2
𝑋 , 𝜎

2
𝑌 , 𝜌),

find the joint distribution of 𝑋 and 𝑊 = 𝑌 − 𝜌𝜎𝑌
𝜎𝑋

𝑋. Whether they are independent?
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Properties

Proposition 10 (Linear combinations of 𝑋 and 𝑌 )

Random variables 𝑋 and 𝑌 follow the bivariate normal distribution with parameters
(𝜇𝑋 , 𝜇𝑌 ; 𝜎2

𝑋 , 𝜎
2
𝑌 , 𝜌), if and only if for any 𝑎, 𝑏 ∈ ℝ,

𝑎𝑋 + 𝑏𝑌 ∼ 𝑁 (𝑎𝜇𝑋 + 𝑏𝜇𝑌 , 𝑎
2𝜎2

𝑋 + 2𝑎𝑏𝜌𝜎𝑋𝜎𝑌 + 𝑏2𝜎2
𝑌 ).
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Examples

Example 11

Let 𝑋 and 𝑌 be jointly normal random variables with parameters 𝜇𝑋 = 1, 𝜎2
𝑋 = 1, 𝜇𝑌 =

0, 𝜎2
𝑌 = 4, and 𝜌 = 1/2. Find (a) ℙ{2𝑋 + 𝑌 ⩽ 3}, (b) Cov(𝑋 + 𝑌, 2𝑋 − 𝑌 ), and (c)

ℙ{𝑌 > 1 |𝑋 = 2}.
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Examples

Solution.
(a) Since 𝑋 and 𝑌 are jointly normal, then 2𝑋 +𝑌 ∼ 𝑁 (2𝜇𝑋 + 𝜇𝑌 , 4𝜎2

𝑋 + 2𝜌(2𝜎𝑋 )𝜎𝑌 + 𝜎2
𝑌 ) =

𝑁 (2, 12). Therefore,

ℙ{𝑉 ⩽ 3} = ℙ

{
𝑉∗ ⩽

3 − 2
√

12

}
≈ 𝛷(0.2887) ≈ 0.6136.

(b) Note that Cov(𝑋, 𝑌 ) = 𝜌𝜎𝑋𝜎𝑌 = 1. Therefore,

Cov(𝑋 + 𝑌, 2𝑋 − 𝑌 ) = 2 Var(𝑋) + 2 Cov(𝑋, 𝑌 ) − Cov(𝑋, 𝑌 ) − Var(𝑌 ) = −1.
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Examples

Solution (Cont’d).
(c) As

𝔼[𝑌 |𝑋 = 2] = 𝜇𝑌 + 𝜌
𝜎𝑌
𝜎𝑋

(2 − 𝜇𝑋 ) = 1, Var(𝑌 |𝑋 = 2) = (1 − 𝜌2)𝜎2
𝑌 = 3,

it follows that 𝑌 |𝑋 = 2 ∼ 𝑁 (1, 3), and therefore,

ℙ{𝑌 > 1 |𝑋 = 2} = 1 −𝛷

(
1 − 1
√

3

)
= 0.5. ■
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Notice!
If 𝑋 and 𝑌 are jointly normal, then each random variable 𝑋 and 𝑌 is normal. However,
the converse is not true.

Example 12

Let 𝑋 ∼ 𝑁 (0, 1) and

𝑊 =

{
1 with probability 1/2
−1 with probability 1/2

be independent random variables. Let 𝑌 = 𝑊𝑋. Find the pdf of 𝑌 . Does (𝑋, 𝑌 )
bivariate normal distributed? Why? Or why not?
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Solution.
By symmetry of 𝑁 (0, 1), we have −𝑋 ∼ 𝑁 (0, 1). Therefore,

ℙ{𝑌 ⩽ 𝑦} = ℙ{𝑌 ⩽ 𝑦 |𝑊 = −1}ℙ{𝑊 = −1} + ℙ{𝑌 ⩽ 𝑦 |𝑊 = 1}ℙ{𝑊 = 1}

=
1
2
ℙ{𝑋 ⩽ 𝑦} + 1

2
ℙ{−𝑋 ⩽ 𝑦}

=
1
2
𝛷(𝑦) + 1

2
𝛷(𝑦) = 𝛷(𝑦).

Hence, 𝑌 ∼ 𝑁 (0, 1).
However, 𝑋 and 𝑌 are not jointly normal, because 𝑍 = 𝑋 + 𝑌 has the following form:

𝑍 =

{
2𝑋 if 𝑊 = 1
0 if 𝑊 = −1.
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Therefore, if 𝑧 ⩾ 0,

ℙ{𝑍 ⩽ 𝑧} = ℙ{𝑍 ⩽ 𝑧 |𝑊 = 1}ℙ{𝑊 = 1} + ℙ{𝑍 ⩽ 𝑧 |𝑊 = −1}ℙ{𝑊 = −1}

=
1
2
ℙ{𝑋 ⩽ 𝑧

2
} + 1

2
=

1
2
(1 +𝛷( 𝑧

2
)),

while if 𝑧 < 0,

ℙ{𝑍 ⩽ 𝑧} = 1
2
ℙ{𝑋 ⩽ 𝑧

2
} = 1

2
𝛷( 𝑧

2
).

This example illustrates that although 𝑋 and 𝑌 are normally distributed, it is possible that
their sum 𝑍 is not normally distributed, which further implies that 𝑋 and 𝑌 are not jointly
normal. ■
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Properties

Some important properties of the bivariate normal distribution include:
■ The marginal distributions of 𝑋 and 𝑌 are themselves normally distributed.

■ The conditional distribution of 𝑋 given 𝑌 = 𝑦 and the conditional distribution of 𝑌 given
𝑋 = 𝑥 are both normally distributed with means and variances that depend on 𝑦 and 𝑥
respectively.

■ The conditional expectation of 𝑋 given 𝑌 = 𝑦 and the conditional expectation of 𝑌 given
𝑋 = 𝑥 are both linear functions of 𝑦 and 𝑥 respectively.
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Multivariate normal distribution

32



Multivariate Normal Distribution

The multivariate normal distribution is a probability distribution that describes the joint
distribution of 𝑝 normally distributed variables.
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Multivariate Normal Distribution

Definition 13
If X = (𝑋1, 𝑋2, . . . , 𝑋𝑝) is a 𝑝-dimensional random vector with mean vector µ and covari-
ance matrix Σ, then the pdf of multivariate normal distribution is given by:

𝑓X (x) = 1
(2𝜋) 𝑝/2 |Σ |1/2

exp
(
−1

2
(x − µ)𝑇Σ−1(x − µ)

)
,

and we denote X ∼ 𝑁 (µ,Σ). Here,

µ =
©«
𝜇1
...
𝜇𝑝

ª®®¬ ∈ ℝ𝑝 , Σ =
©«
𝜎11 . . . 𝜎1𝑝
...

. . .
...

𝜎𝑝1 . . . 𝜎𝑝𝑝

ª®®¬ ∈ ℝ𝑝×𝑝,

and Σ is a positive definite matrix. The symbol |Σ | is the determinant of Σ.
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Standard MND

Definition 14
Specially, if µ = 0, and Σ = I𝑝, then we say X follows a standard multivariate normal
distribution if X ∼ 𝑁 (0, I𝑝).
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Properties

Some important properties of the multivariate normal distribution include:
■ Any linear combination of the components of X is also normally distributed.

■ The marginal distributions of any subset of components of X are themselves
multivariate normal.

■ The conditional distribution of any subset of components of X given the remaining
components is also multivariate normal.

■ The conditional expectation of any subset of components of X given the remaining
components is a linear function of the remaining components.
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Properties of 𝑓X (x)

Proposition 15

We have ∫
ℝ𝑝

𝑓X (x)𝑑x = 1.
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Proof.
Since Σ > 0, it follows that a non-singular matrix L such that

Σ = LL𝑇 , |L| = |Σ |1/2.

Consider the transformation

y = L−1(x − µ).

Then,

x = Ly + 𝜇,

Therefore,

(x − µ)𝑇Σ−1(x − µ) = y𝑇y.

■
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Moment generating function of 𝑁 (µ,Σ)

Theorem 16
The moment generating function of 𝑁 (µ,Σ) is given by

𝑀 (t) = exp
{
µ𝑇t + 1

2
t𝑇Σt

}
, t ∈ ℝ𝑝.
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Another definition of 𝑁 (µ,Σ)

Definition 17
For µ ∈ ℝ𝑝, and Σ ∈ ℝ𝑝×𝑝 is a non-negative definite matrix. Then X is called to follow a
multivariate normal distribution if its moment generating function is

𝑀 (t) = exp
{
µ𝑇t + 1

2
t𝑇Σt

}
.

Remark
Here,Σ may be degenerate, say, rank(Σ) < 𝑝, or |Σ | = 0. In this case, we sayX follows
a degenerate normal distribution, or singular normal distribution.
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Properties

Theorem 18
Any subvector of X , say,

�̃� = (𝑋𝑘1 , . . . , 𝑋𝑘𝑟 )𝑇 , 𝑟 ⩽ 𝑝,

also follows a normal distribution 𝑁 (µ̃, Σ̃), where

µ̃ =
©«
𝜇𝑘1
...

𝜇𝑘𝑟

ª®®¬, Σ̃ =
©«
𝜎𝑘1,𝑘1 . . . 𝜎𝑘1,𝑘𝑟

...
. . .

...
𝜎𝑘𝑟 ,𝑘1 . . . 𝜎𝑘𝑟 ,𝑘𝑟

ª®®¬
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Properties

Remark
The marginal distribution of 𝑋 𝑗 is 𝑁 (𝜇 𝑗, 𝜎 𝑗 𝑗). The marginal distribution of (𝑋 𝑗, 𝑋𝑘) is

𝑁

((
𝜇 𝑗

𝜇𝑘

)
,

(
𝜎 𝑗 𝑗 𝜎 𝑗𝑘

𝜎 𝑗𝑘 𝜎𝑘𝑘

))
.
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Properties

Theorem 19
We have

𝜇 𝑗 = 𝔼[𝑋 𝑗], 𝜎 𝑗 𝑗 = Var(𝑋 𝑗).

Moreover,

𝜎 𝑗𝑘 = Cov(𝑋 𝑗, 𝑋𝑘).
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Independence

Theorem 20
Random variables 𝑋1, 𝑋2, . . . , 𝑋𝑝 are independent, if and only if 𝜎 𝑗𝑘 = 0 for all 𝑗 ≠ 𝑘.
Generally, if X = (X1,X2), where X1 and X2 are two subvectors of X , and let

Σ =

(
Σ11 Σ12
Σ21 Σ22

)
,

where Σ11 and Σ22 are the covariance matrices of X1 and X2, respectively, and

Σ12 = 𝔼[(X1 − µ1)(X2 − µ2)𝑇 ].

Then, X1 and X2 are independent if and only if Σ12 = 0.
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Example

Example 21

Assume that X = ©«
𝑋1
𝑋2
𝑋3

ª®¬ follows 𝑁

(©«
3
1
2

ª®¬, ©«
4 0 2
0 1 −1
2 −1 3

ª®¬
)
.

Find
(a) The distributions of 𝑋1, 𝑋2 and 𝑋3.

(b) The distribution of
(
𝑋1
𝑋2

)
.

(c) Whether 𝑋1 and 𝑋2 are independent?

(d) Whether 𝑋1 and (𝑋2, 𝑋3)𝑇 are independent?
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Linear transformation

■ Let X ∈ ℝ𝑝 be any random vector (not necessarily normal), satisfying

𝔼[X] = µ,Cov(X) = Σ.

■ Let a = (𝑎1, 𝑎2, . . . , 𝑎𝑝)𝑇 . Consider the linear transformation

𝑌 =
𝑝∑
𝑗=1

𝑎 𝑗𝑋 𝑗 = a𝑇X .

■ It follows that

𝔼[𝑌 ] =
𝑝∑
𝑗=1

𝑎 𝑗𝜇 𝑗 = a𝑇µ.

■ Moreover,

Var(𝑌 ) =
𝑝∑
𝑗=1

𝑝∑
𝑘=1

𝑎 𝑗𝑎𝑘𝜎 𝑗𝑘 = a𝑇Σa.
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Linear transformation of 𝑁 (µ,Σ)

Theorem 22
X ∼ 𝑁 (µ,Σ) if and only if

a𝑇X ∼ 𝑁

( 𝑝∑
𝑗=1

𝑎 𝑗𝜇 𝑗,
𝑝∑
𝑗=1

𝑝∑
𝑘=1

𝑎 𝑗𝑎𝑘𝜎 𝑗𝑘

)
for any a ∈ ℝ𝑝.
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Property of transformation of 𝑁 (µ,Σ)

Theorem 23
If X ∼ 𝑁 (µ,Σ), then for any C ∈ ℝ𝑟×𝑝,

CX ∼ 𝑁 (Cµ,CΣC𝑇 ).
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Theorem 24
If X ∼ 𝑁 (µ,Σ), then there exists a orthogonal transformation U such that each
component of UX is independent of each other. More specifically,

UX ∼ 𝑁 (Uµ,Λ),

where

Λ =

©«
𝜆1 0 . . . 0
0 𝜆2 . . . 0
...

...
. . .

...
0 0 . . . 𝜆 𝑝

ª®®®®¬
and 𝜆 𝑗’s are the eigenvalues of Σ.
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Example

Example 25

Assume that X =
©«
𝑋1
𝑋2
𝑋3

ª®¬ follows 𝑁

©«
3
1
2

ª®¬, ©«
4 0 0
0 1 −1
0 −1 1

ª®¬
.

Find
(a) the distribution of 𝑋1 − 2𝑋2 + 𝑋3;

(b) the joint distribution of 𝑋1 − 𝑋2 + 𝑋3 and 3𝑋1 + 𝑋2 − 2𝑋3;

(c) an orthogonal matrix U such that UX has independent components.
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Solution

Solution.

(a) Let 𝑌 = a𝑇X , where a = ©«
1

−2
1

ª®¬, then 𝑌 = 𝑋1 − 2𝑋2 + 𝑋3. Note that

a𝑇µ =
(
1 −2 1

)©«
3
1
2

ª®¬ = 3, a𝑇Σa =
(
1 −2 1

)©«
4 0 0
0 1 −1
0 −1 1

ª®¬©«
1

−2
1

ª®¬ = 15.

The distribution of 𝑌 is 𝑁 (3, 15).
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Solution

(b) Let a1 = (1,−1, 1)𝑇 and a2 = (3, 1,−2), and let

A =

(
1 −1 1
3 1 −2

)
Then,

AX =

(
𝑋1 − 2𝑋2 + 𝑋3

3𝑋1 + 𝑋2 − 2𝑋3

)
Note that

Aµ =

(
1 −1 1
3 1 −2

)©«
3
1
2

ª®¬ =

(
4
6

)
,

AΣA𝑇 =

(
1 −1 1
3 1 −2

)©«
4 0 0
0 1 −1
0 −1 1

ª®¬©«
1 3

−1 1
1 −2

ª®¬ =

(
8 6
6 45

)
.

■
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Solution

Solution.
(c) The eigenvalues of Σ are 4, 2 and 0, and the eigenvectors are

u1 =
©«
1
0
0

ª®¬, u2 =
©«

0
−

√
2

2√
2

2

ª®®¬, u3 =
©«

0√
2

2√
2

2

ª®®¬,
Then, with

U = (u1,u2,u3)𝑇 ,Λ = diag(4, 2, 0).

we have Σ = U𝑇ΛU . As a consequence,

Cov(UX) = UΣU𝑇 = Λ.

■
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Chi-squared distribution

Theorem 26
If X ∼ 𝑁𝑝(µ,Σ) where |Σ | > 0, then

(X − µ)𝑇Σ−1(X − µ) ∼ 𝜒2
𝑝.
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Conditional distribution

Theorem 27

If X =

(
X1
X2

)
follows a 𝑝-variate normal distribution 𝑁 (

(
µ1
µ2

)
,

(
Σ11 Σ12
Σ21 Σ22

)
), then

X2 |X1 ∼ 𝑁 (µ2 +Σ21Σ
−1
11 (X1 − µ1),Σ22 −Σ21Σ

−1
11 Σ12).
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Example

Example 28

Let

X ∼ 𝑁


©«

2
5

−2
1

ª®®®¬,
©«
9 0 3 3
0 1 −1 2
3 −1 6 −3
3 2 −3 7

ª®®®¬
 .

Let

Y =

(
𝑋1
𝑋2

)
, Z =

(
𝑋3
𝑋4

)
Find the distribution of Y |Z = z.
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Solution

Solution.
Note that

µ𝑌 =

(
2
1

)
, µ𝑍 =

(
−2

1

)
, Σ𝑌𝑌 =

(
9 0
0 1

)
, Σ𝑍𝑍 =

(
6 −3

−3 7

)
, Σ𝑌𝑍 =

(
3 3

−1 2

)
= Σ𝑇

𝑍𝑌 .

Then,

𝔼[Y |Z = z] = µ𝑌 +Σ𝑌𝑍Σ
−1
𝑍𝑍 (z − µ𝑋 )

=

(
2
5

)
+

(
3 3

−1 2

) (
6 −3

−3 7

)−1 (
𝑧1 + 2
𝑧2 − 1

)
=

(
3 + 10

11 𝑧1 + 9
11 𝑧2

14
3 − 1

33 𝑧1 + 3
11 𝑧2

)
.
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Solution

Moreover,

Cov(Y |Z = z) = Σ𝑌𝑌 −Σ𝑌𝑍Σ
−1
𝑍𝑍 Σ𝑍𝑌

=

(
9 0
0 1

)
−

(
3 3

−1 2

) (
6 −3

−3 7

)−1 (3 −1
3 2

)
=

1
33

(
126 −24
−24 14

)
.

■
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Fisher’s Lemma

Theorem 29
Let 𝑋1, . . . , 𝑋𝑛 be i.i.d. 𝑁 (𝜇, 𝜎2) variables. Let

𝑋 =
1
𝑛

𝑛∑
𝑖=1

𝑋𝑖, 𝜎2
𝑛 =

1
𝑛 − 1

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋)2.

Then,

(i) 𝑋 and 𝜎2
𝑛 are independent;

(ii) 𝑋 ∼ 𝑁 (𝜇, 𝜎2/𝑛);

(iii) (𝑛 − 1)𝜎2
𝑛/𝜎2 ∼ 𝜒2

𝑛−1.
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Further reading

[1] Sheldon M. Ross (谢尔登·M.罗斯).

A first course in probability (概率论基础教程): Chapter 6.

10th edition (原书第十版),机械工业出版社
[2] 李贤平.

概率论基础: 第四章第六节.

第三版,高等教育出版社
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