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Abstract

In this paper, we establish optimal Berry–Esseen bounds for the generalized U -
statistics. The proof is based on a new Berry–Esseen theorem for exchangeable
pair approach by Stein’s method under a general linearity condition setting. As
applications, an optimal convergence rate of the normal approximation for subgraph
counts in Erdos̈–Rényi graphs and graphon-random graph is obtained.
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1 Introduction

Let X = (X1, . . . , Xn) ∈ Xn and Y = (Yi,j , 1 6 i < j 6 n) ∈ Yn(n−1)/2 be two families
of i.i.d. random variables; moreover, X and Y are also mutually independent and we
set Yj,i = Yi,j for j > i. For k > 1, let f : X k × Yk(k−1)/2 → R be a function and we
say f is symmetric if the value of the function f(Xi1 , . . . , Xik ;Yi1,i2 , . . . , Yik−1,ik) remains
unchanged for any permutation of indices 1 6 i1 6= i2 6= . . . 6= ik 6 n. In this paper, we
consider the generalized U -statistic defined by

Sn,k(f) =
∑

α∈In,k

f(Xα(1), . . . , Xα(k);Yα(1),α(2), . . . , Yα(k−1),α(k)), (1.1)

where for every ` > 1 and n > `,

In,` = {α = (α(1), . . . , α(`)) : 1 6 α(1) < · · · < α(`) 6 n}. (1.2)

We note that every α ∈ In,` is an `-fold ordered index.
As a generalization of the classical U -statistic, generalized U -statistics have been

widely applied in the random graph theory as a count random variable. ? ] studied the
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Generalized U -statistics

limiting behavior of Sn,k(f) via a projection method. Specifically, the function f can be
represented as an orthogonal sum of terms indexed by subgraphs of the complete graph
with k vertices. ? ] showed that the limiting behavior of Sn,k(f) depends on topology of
the principle support graphs (see more details in Subsection 2.1) of f . In particular, the
random variable Sn,k(f) is asymptotically normally distributed if the principle support
graphs are all connected. However, the convergence rate is still unknown.

The main purpose of this paper is to establish a Berry–Esseen bound for Sn by using
Stein’s method. Stein’s method is a powerful tool to estimating convergence rates
for distributional approximation. Since introduced by ? ] in ? , Stein’s method has
shown to be a powerful tool to evaluate distributional distances for dependent random
variables. One of the most important techniques in Stein’s method is the exchangeable
pair approach, which is commonly taken in computing the Berry–Esseen bound for both
normal and nonnormal approximations. We refer to ? ? ? ] and ? ] for more details on
Berry–Esseen bound for bounded exchangeable pairs. It is worth mentioning that ? ]
obtained a Berry–Esseen bound for unbounded exchangeable pairs.

Let W be the random variable of interest, and we say (W,W ′) is an exchangeable

pair if (W,W ′)
d.
= (W ′,W ). For normal approximation, it is often to assume the following

condition holds:

E{W −W ′|W} = λ(W +R), (1.3)

where λ > 0 and R is a random variable with a small E |R|. The condition ?? can be
understood as a linear regression condition. Although an exchangeable pair can be easily
constructed, it may be not easy to verify the linearity condition ?? in some applications.

In this paper, we aim to establish an optimal Berry–Esseen bound for the generalized
U -statistics by developing a new Berry–Esseen theorem for exchangeable pair approach
by assuming a more general condition than ??. More specifically, we replace W −W ′ in
?? by a random variable D that is an antisymmetric function of (X,X ′). The new result is
given in Section 4. There are several advantages of our result. Firstly, we propose a new
condition more general than ?? that may be easy to verify. For instance, the condition
can be verified by constructing an antisymmetric random variable by the Gibbs sampling
method, embedding method, generalized perturbative approach and so on. Secondly,
the Berry–Esseen bound often provides an optimal convergence rate for many practical
applications.

The rest of this paper is organized as follows. In Section 2, we give the Berry–Esseen
bounds for Sn,k(f). Applications to subgraph counts in κ-random graphs are given in
Section 3. The new Berry–Esseen theorem for exchangeable pair approach under a new
setting is established in Section 4. We give the proofs of our main results in Section 5.
The proofs of other results are postponed to Section 6.

2 Main results

Let (X,Y ), f and Sn,k(f) be defined in Section 1. For any ` > 1, [`] = {1, . . . , `} and
[`]2 = {(i, j) : 1 6 i, j 6 `}. Let A ⊂ [`] and let B ⊂ [`]2, and let XA = (Xi : i ∈ A) and
YB = (Yi,j : (i, j) ∈ B). Specially, we can simply write f(X1, . . . , Xk;Y1,2, . . . , Yk−1,k) as
f(X[k];Y[k]2). Let GA,B be the graph with vertex set A and edge set B, and let vA,B be
the number of nodes in GA,B.

By the Hoeffding decomposition, we have

f(X[k];Y[k]2) =
∑

A⊂[k],B⊂[k]2

fA,B(XA;YB),
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Generalized U -statistics

where fA,B : X |A| × Y |B| → R is defined as

fA,B(xA; yB) =
∑

(A′,B′):A′⊂A,B′⊂B

(−1)|A|+|B|−|A
′|−|B′|

× E
{
f(X1, . . . , Xk;Y1,2, . . . , Yk−1,k)

∣∣ XA′ = xA′ , YB′ = yB′
}
, (2.1)

where xA = {xi : i ∈ A} and yB = {yi,j : (i, j) ∈ B} for A ⊂ [k] and B ⊂ [k]2. We remark
that if A = ∅ and B = ∅, then f∅,∅(X∅;Y∅) = E{f(X[k];Y[k]2)}. For ` = 0, 1, . . . , k, let

f(`)(X[k];Y[k]2) =


E{f(X[k];Y[k]2)} if ` = 0,∑
vA,B=`

f(XA;YB) if ` > 1, (2.2)

where vA,B is the number of nodes in GA,B. Let d = min{` > 0 : f(`) 6= 0}, and we call d
the principal degree of f . We say f(d) is the principal part of f . Moreover, we say the
subgraphs GA,B such that vA,B = d and fA,B 6= 0 are the principal support graphs of f .

The central limit theorems for Sn,k(f) is proved by ? ]. Let σA,B = ‖fA,B(XA;YB)‖,
and let Gf,d = {GA,B : σA,B 6= 0, vA,B = d} be the set of principal index graph. We remark
that if f has the principal degree d, then Var(Sn,k(f)) is of order n2k−d, see Lemmas 2
and 3 in ? ]. ? ] proved that if all graphs in Gf are connected, then

Sn,k(f)− E{Sn,k(f)}
(Var(Sn,k(f)))1/2

d.→ N(0, 1).

Note that if not all principal support graphs are connected, then the limiting distribution
of the scaled version of Sn,k is nonnormal (see Theorems 2 and 3 in ? ]), and we will
consider this case in another paper.

Now, assume that f is a symmetric function having principal degree d (1 6 d 6 k). In
this subsection, we give a Berry–Esseen bound for Sn,k(f). For x ∈ X , let

f1(x) := f{1},∅(x) = E{f(X[k];Y[k]2) |X1 = x} − E{f(X[k];Y[k]2)}.

If ‖f1(X1)‖2 > 0, then it follows that d = 1. Here and in the sequel, we denote by
‖Z‖p := (E |Z|p)1/p for p > 0 and we denote by Φ(·) the distribution function of N(0, 1).
The following theorem provides the Berry–Esseen bound for Sn,k(f) in the case where
‖f1(X1)‖2 > 0.

Theorem 2.1. If σ1 := ‖f1(X1)‖2 > 0, then

sup
z∈R

∣∣∣∣P[Sn,k(f)− E{Sn,k(f)}√
Var{Sn,k(f)}

6 z

]
− Φ(z)

∣∣∣∣ 6 12k‖f(X[k];Y[k]2)‖24√
nσ2

1

. (2.3)

Remark 2.2. We remark that Var(Sn,k(f)) = O(n2k−1) as n → ∞. Typically, the right
hand side of ?? is of order n−1/2. Specially, if f(X[k], Y[k]2) = h(X[k]) for some symmetric
function h : X k → R, then Sn,k is the classical U -statistic. In this case, ? ] obtained a
Berry–Esseen bound of order n−1/2 under the assumption that ‖h(X[k])‖3 <∞.

If σ1 = 0, then d > 2, that is, the principal degree of f is at least 2. We have the
following theorem.

Theorem 2.3. Let τ := ‖f(X[k];Y[k]2)‖4 < ∞ and let σmin := min(σA,B : GA,B ∈ Gf,d).
Assume that f is a symmetric function having principal degree d for some 2 6 d 6 k, and
assume further that for all graphs in Gf,d are connected. Then, we have

sup
z∈R

∣∣∣∣P[ (Sn,k(f)− E{Sn,k(f)})√
Var{Sn,k(f)}

6 z

]
− Φ(z)

∣∣∣∣ 6 Cn−1/2,

where C > 0 is a constant depending only on k, d, σmin, and τ .
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Generalized U -statistics

If we further assume that the function f does not depend on X, i.e., f(X;Y ) = g(Y )

for some symmetric g : Yk(k−1)/2 → R, we obtain a sharper convergence rate. To give
the theorem, we first introduce some more notation. Let G(r) be the graph generated
from G by deleting the node r and all the edges connecting to the node r. We say G
is strongly connected if G(r) is connected or empty for all r ∈ V (G). We note that all
strongly connected graphs are also connected. The following theorem provides a sharper
Berry–Esseen bound than that in ??.

Theorem 2.4. Assume that f(X[k];Y[k]2) = g(Y[k]2) almost surely for some symmetric
g : Yk(k−1)/2 → R. Let τ and σA,B be defined in ??. Assume that the conditions in ?? are
satisfied and assume further that all graphs in Gf,d are strongly connected. Then,

sup
z∈R

∣∣∣∣P[ (Sn,k(g)− E{Sn,k(g)})√
Var{Sn,k(g)}

6 z

]
− Φ(z)

∣∣∣∣ 6 Cn−1,

where C > 0 is a constant depending on k, d, σmin, and τ .

3 Applications

3.1 Subgraphs counts in random graphs generated from graphons

A symmetric Lebesgue measurable function κ : [0, 1]2 → [0, 1] is called a graphon,
which was firstly introduced by [? ] to represent the graph limit. Given a graphon κ

and n > 2, the κ-random graph G(n, κ) can be generated as follows: Let n > 1 and let
X = (X1, . . . , Xn) be a vector of independent uniformly distributed random variables
on [0, 1]. Given X, we generate the graph G(n, κ) by connecting the node pair (i, j)

independently with probability κ(Xi, Xj). This construction was firstly introduced by ? ],
which can be used to study large dense and sparse random graphs and random trees
generated from graphons. We refer to ? ? ? ? ] and ? ] for more details.

Subgraph counts are important statistics in estimating graphons. As a special case,
when κ ≡ p for some p ∈ (0, 1), the κ-random graph model becomes the classical Erdös–
Rényi model ER(p). The study of asymptotic properties of subgraph counts in ER(p)

dates back to ? ? ? ] for more details. Recently, ? ], ? ] and ? ] applied Stein’s
method to obtain an optimal Berry–Esseen bound for triangle counts in ER(p). For
subgraph counts in κ-random graph, ? ] proved an upper bound of the Kolmogorov
distance for multivariate normal approximations for centered subgraph counts with
order n−1/(p+2) for some p > 0. However, the Berry–Esseen bounds for subgraph counts
of κ-random graph is still unknown so far. In this subsection, we apply ???? to prove
sharp Berry–Esseen bounds for subgraph counts statistics.

Let Ξ = (ξi,j)16i<j6n be the adjacency matrix of G(n, κ), where for each (i, j), the
binary random variable ξi,j indicates the connection of the graph. Formally, let Y =

(Y1,1, . . . , Yn−1,n) be a vector of independent uniformly distributed random variables
that is also independent of X, and then we can write ξi,j = 1(Yi,j 6 κ(Xi, Xj)). For
any nonrandom simple F with v(F ) = k, the (injective) subgraph counts and induced
subgraph counts in G(n, κ) are defined by

T inj
F := T inj

F (G(n, κ)) =
∑

α∈In,k

φinj
F (ξα(1),α(2), . . . , ξα(k−1),α(k)),

T ind
F := T ind

F (G(n, κ)) =
∑

α∈In,k

φind
F (ξα(1),α(2), . . . , ξα(k−1),α(k)),
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Generalized U -statistics

respectively, where for (x1,1, . . . , xk−1,k) ∈ Rk(k−1)/2,

φinj
F (x1,1, . . . , xk−1,k) =

∑
H:H∼=F

∏
(i,j)∈E(H)

xi,j ,

φind
F (x1,2, . . . , xk−1,k) =

∑
H:H∼=F

∏
(i,j)∈E(H)

xi,j
∏

(i,j)6∈E(H)

(1− xi,j).

Here, the summation
∑
H:H∼=F ranges over the subgraphs with v(F ) nodes that are

isomorphic to F and thus contains v(F )!/|Aut(F )| terms, where |Aut(F )| is the number
of automorphisms of F . Moreover, we note that both φinj

F and φind
F are symmetric. For

example, if F is the 2-star, then k = 3, |Aut(F )| = 2 and

φinj
F (ξ1,2, ξ1,3, ξ2,3) = ξ1,2ξ1,3 + ξ1,2ξ2,3 + ξ1,3ξ2,3,

φind
F (ξ1,2, ξ1,3, ξ2,3) = ξ1,2ξ1,3(1− ξ2,3) + ξ1,2ξ2,3(1− ξ1,3) + ξ1,3ξ2,3(1− ξ1,2).

If F is a triangle, then |Aut(F )| = 6 and

φinj
F (ξ1,2, ξ1,3, ξ2,3) = φind

F (ξ1,2, ξ1,3, ξ2,3) = ξ1,2ξ1,3ξ2,3.

Let

tF (κ) =

∫
[0,1]k

∏
(i,j)∈E(F )

κ(xi, xj)
∏

i∈V (F )

dxi,

tind
F (κ) =

∫
[0,1]k

∏
(i,j)∈E(F )

κ(xi, xj)
∏

(i,j)6∈E(F )

(1− κ(xi, xj))
∏

i∈V (F )

dxi.

Then, we have

E{φinj
F (ξ1,1, . . . , ξk−1,k)} =

k!

|Aut(F )|
tF (κ),

E{φind
F (ξ1,1, . . . , ξk−1,k)} =

k!

|Aut(F )|
tind
F (κ).

As ξi,j = 1(Yi,j 6 κ(Xi, Xj)), let

f inj
F (X[k];Y[k]2) = φinj

F (ξ1,1, . . . , ξk−1,k),

Now, as random variables (ξi,j)16i<j6n are conditionally independent given X, we have

E{f inj
F (X[k];Y[k]2) |X} =

∑
H∼=F

∏
(i,j)∈E(H)

κ(Xi, Xj),

E{f ind
F (X[k];Y[k]2) |X} =

∑
H∼=F

∏
(i,j)∈E(H)

κ(Xi, Xj)
∏

(i,j)6∈E(H)

(1− κ(Xi, Xj)).

Let

f inj
1 (x) = E{f inj

F (X[k];Y[k]2) |X1 = x}

=
∑
H∼=F

E

{ ∏
(i,j)∈E(H)

κ(Xi, Xj)

∣∣∣∣ X1 = x

}
,

and similarly, let

f ind
1 (x) = E{f ind

F (X[k];Y[k]2) |X1 = x}

=
∑
H∼=F

E

{ ∏
(i,j)∈E(H)

κ(Xi, Xj)
∏

(i,j) 6∈E(H)

(1− κ(Xi, Xj))

∣∣∣∣ X1 = x

}
.

We have the following theorem, which follows from ?? directly.
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Theorem 3.1. Let σinj
1 = ‖f inj

1 (X1)−E{f inj
1 (X1)}‖2 and σind

1 = ‖f ind
1 (X1)−E{gind

F (X1)}‖2.
Assume that σinj

1 > 0, then

sup
z∈R

∣∣∣∣P[ √nkσinj
1

(
n

k

)−1

(T inj
F − E{T

inj
F }) 6 z

]
− Φ(z)

∣∣∣∣ 6 Cn−1/2.

Moreover, assume that σind
1 > 0, then

sup
z∈R

∣∣∣∣P[ √nkσind
1

(
n

k

)−1

(T ind
F − E{T ind

F }) 6 z

]
− Φ(z)

∣∣∣∣ 6 Cn−1/2.

If κ ≡ p for a fixed number 0 < p < 1, then the random variables (ξi,j)16i<j6n are i.i.d.
and the functions φinj

F and φind
F do not depend on X. We have the following theorem:

Theorem 3.2. Let κ ≡ p for 0 < p < 1. Then

sup
z∈R

∣∣∣∣P[T inj
F − E{T

inj
F }

(Var{T inj
F })1/2

6 z

]
− Φ(z)

∣∣∣∣ 6 Cn−1.

Remark 3.3. For the L1 bound, ? ] proved the same order of O(n−1) in the case that p
is a constant. For the Berry–Esseen bound, ? ] proved a general Berry–Esseen bound for
subgraph counts for Erdös–Rényi random graph using a different method. Specially, if p
is a constant, then ?? provides the same result as in ? ].

For induced subgraph counts, we need to consider some separate cases. Let s(F ) and
t(F ) denote the number of 2-stars and triangles in F , respectively. If any of the following
conditions holds, then it has been proven by [? ] that (T ind

F − E{T ind
F })/(Var{T ind

F })1/2

converges to a standard normal distribution:

(G1) If e(F ) 6= p
(
v(F )

2

)
;

(G2) if e(F ) = p
(
v(F )

2

)
, s(F ) 6= 3p2

(
v(F )

3

)
;

(G3) if e(F ) = p
(
v(F )

2

)
, s(F ) = 3p2

(
v(F )

3

)
and t(F ) 6= p3

(
v(F )

3

)
.

The following theorem gives the Berry–Esseen bounds for induced subgraph counts.

Theorem 3.4. Let κ ≡ p for 0 < p < 1. If (G1) or(G3) holds, then

sup
z∈R

∣∣∣∣P[T ind
F − E{T ind

F }
(Var{T ind

F })1/2
6 z

]
− Φ(z)

∣∣∣∣ 6 Cn−1. (3.1)

If (G2) holds, then

sup
z∈R

∣∣∣∣P[T ind
F − E{T ind

F }
(Var{T ind

F })1/2
6 z

]
− Φ(z)

∣∣∣∣ 6 Cn−1/2. (3.2)

4 A new Berry–Esseen bound for exchangeable pair approach

4.1 Berry–Esseen bound

In this section, we establish a new Berry–Esseen theorem for exchangeable pair
approach under a new setting. Let X ∈ X be a random variable valued on a measurable
space and let W = φ(X) be the random variable of interest where φ : X → R. Assume
that E{W} = 0 and E{W 2} = 1. We propose the following condition:

(A) Let (X,X ′) be an exchangeable pair and let F : X × X → R be an antisymmetric
function. Assume that D := F (X,X ′) satisfies the following condition:

E{D|X} = λ(W +R), (4.1)

where λ > 0 is a constant and R is a random variable.
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Generalized U -statistics

We remark that the operator of antisymmetric functions was firstly mentioned by ? ], and
the condition (A) was considered by ? ], who applied the exchangeable pair approach to
prove concentration inequalities.

The following theorem provides a uniform Berry–Esseen bound for exchangeable pair
approach under the assumption (A).

Theorem 4.1. Let (X,X ′) and D satisfy the condition (A). Let W ′ = φ(X ′) and ∆ =

W −W ′. Then,

sup
z∈R
|P[W 6 z]− Φ(z)| 6 E

∣∣∣∣1− 1

2λ
E{D∆ |W}

∣∣∣∣+
1

λ
E
∣∣E{D∗∆ |W}∣∣+ E|R|, (4.2)

provided that D∗ := F ∗(X,X ′) > |D|, where F ∗ is a symmetric function.

Remark 4.2. Assume that ?? is satisfied. Then, we can choose D = ∆ = W −W ′, and
the right hand side of ?? reduces to

E

∣∣∣∣1− 1

2λ
E{∆2 |W}

∣∣∣∣+
1

λ
E
∣∣E{∆∗∆}∣∣+ E |R|,

where ∆∗ := ∆∗(W,W ′) is a symmetric function for W and W ′ such that ∆∗ > |∆|. Thus,
?? recovers to Theorem 2.1 in ? ].

The following corollary is useful for random variables that can be decomposed as a
sum of W and a remainder term. Specifically, let T := T (X) be a random variable such
that T = W + U , where W = φ(X) is as defined at the beginning of this section, and
U := U(X) is a remainder term. The following corollary gives a Berry–Esseen bound for
T .

Corollary 4.3. Let (X,X ′) ∈ X × X be an exchangeable pair and let D := F (X,X ′)

where F : X × X → R is antisymmetric. Assume that

E{D |X} = λ(W +R) (4.3)

for some λ > 0 and some random variable R. Let U ′ := U(X ′) and ∆ = φ(X) − φ(X ′).
Then, we have

sup
z∈R

∣∣P[T 6 z]− Φ(z)
∣∣ 6 E∣∣∣∣1− 1

2λ
E{D∆ |X}

∣∣∣∣
+

1

λ
E
∣∣E{D∗∆ |X}∣∣+

3

2λ
E|D(U − U ′)|+ E |R|+ E |U |,

provided that D∗ := D∗(X,X ′) is any symmetric function of X and X ′ such that D∗ > |D|.
Remark 4.4. Assume that X = (X1, . . . , Xn) is a family of independent random variables.
Let W =

∑n
i=1 ξi be a linear statistic, where ξi = hi(Xi) and hi is a nonrandom function,

such that E{ξi} = 0 and
∑n
i=1E{ξ2

i } = 1, and let U = U(X1, . . . , Xn) ∈ R be a random
variable. Let T = W +U , β2 =

∑n
i=1E{|ξi|21(|ξi| > 1)} and β3 =

∑n
i=1E{|ξi|31(|ξi| 6 1)}.

? ] (see also ? ]) proved the following result:

sup
z∈R
|P[T 6 z]− Φ(z)| 6 17(β2 + β3) + 5E |U |+ 2

n∑
i=1

E|ξi(U − U (i))|, (4.4)

where U (i) is any random variable independent of ξi.
The Berry–Esseen bound in ?? improves ? ]’s result in the sense that the random

variable W in our result is not necessarily a partial sum of independent random variables,
and our result in ?? can be applied to a general class of random variables.
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4.2 Proof of Theorem 4.1

In this subsection, we prove Theorem 4.1 by Stein’s method. The proof is similar to
that of Theorem 2.1 in ? ]. To begin with, we need to prove the following lemma, which
is useful in the proof of Theorem 4.1.

Lemma 4.5. Let f be a nondecreasing function. Then,

1

2λ

∣∣∣∣E{D ∫ 0

−∆

(
f(W + u)− f(W )

)
du

}∣∣∣∣ 6 1

2λ
E
{
D∗∆f(W )

}
,

where D∗ is as defined in ??.

Proof of ??. Since f(·) is nondecreasing, it follows that

∆
(
f(W )− f(W ′)

)
> 0

and

0 >
∫ 0

−∆

(
f(W + u)− f(W )

)
du

> −∆
(
f(W )− f(W ′)

)
,

which yields

−E
{
D1(D > 0)∆

(
f(W )− f(W ′)

)}
6 E

{
D

∫ 0

−∆

(
f(W + u)− f(W )

)
du

}
6 −E

{
D1(D < 0)∆

(
f(W )− f(W ′)

)}
.

Recalling that W = φ(X), D = F (X,X ′) is antisymmetric and D∗ = F ∗(X,X ′) is
symmetric, as (X,X ′) is exchangeable, we have

E
{
D1(D > 0)∆

{
f(W )− f(W ′)

}}
= −E

{
D1(D < 0)∆

(
f(W )− f(W ′)

)}
,

and

E
{
D∗1(D > 0)∆f(W )

}
= −E

{
D∗1(D < 0)∆f(W ′)

}
.

Moreover, as E
{
D∗∆1(D = 0)

(
f(W ) − f(W ′)

)}
> 0 and E

{
D∗1(D = 0)∆f(W )

}
=

−E
{
D∗1(D = 0)∆ϕ(W ′)

}
, it follows that

E{D∗∆1(D = 0)f(W )} > 0.

Therefore,

1

2λ

∣∣∣∣E{D ∫ 0

−∆

{
f(W + u)− f(W )

}
du

}∣∣∣∣
6 − 1

2λ
E
{
D1(D < 0)∆

(
f(W )− f(W ′)

)}
6

1

2λ
E
{
D∗1(D < 0)∆

(
f(W )− f(W ′)

)}
=

1

2λ
E
{
D∗∆

(
1(D > 0) + 1(D < 0)

)
f(W )

}
6

1

2λ
E{D∗∆f(W )}.
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Proof of ??. We apply some ideas of Theorem 2.1 in ? ] to prove the desired result. Let
z > 0 be a fixed real number, and fz the solution to the Stein equation:

f ′(w)− wf(w) = 1(w 6 z)− Φ(z), (4.5)

where Φ(·) is the distribution function of the standard normal distribution. It is well
known that (see, e.g., ? ])

fz(w) =

{√
2πew

2/2Φ(w)
{

1− Φ(z)
}

if w 6 z,
√

2πew
2/2Φ(z)

{
1− Φ(w)

}
otherwise,

(4.6)

Since E{D|W} = λ(W +R), and D = F (X,X ′) is antisymmetric, it follows that, for
any absolutely continuous function f ,

0 = E
{
D
(
f(W ) + f(W ′)

)}
= 2E{Df(W )} − E

{
D
(
f(W )− f(W ′)

)}
= 2λE{(W +R)f(W )} − E

{
D

∫ 0

−∆

f ′(W + u) du

}
.

Rearranging the foregoing equality, we have

E{Wf(W )} =
1

2λ
E

{
D

∫ 0

−∆

f ′(W + u) du

}
− E{Rf(W )}. (4.7)

By ??,

E
{
Wfz(W )

}
=

1

2λ
E

{
D

∫ 0

−∆

f ′z(W + t) dt

}
− E

{
Rfz(W )

}
,

and thus,

P(W > z)−
{

1− Φ(z)
}

= E
{
f ′z(W )−Wfz(W )

}
= J1 − J2 + J3,

(4.8)

where

J1 = E

{
f ′z(W )

(
1− 1

2λ
E {D∆ |W}

)}
,

J2 =
1

2λ
E

{
D

∫ 0

−∆

(f ′z(W + u)− f ′z(W )) du

}
,

J3 = E
{
Rfz(W )

}
.

We now bound J1, J2 and J3, separately. By ? , Lemma 2.3], we have

‖fz‖ 6 1, ‖f ′z‖ 6 1, sup
z∈R

∣∣wf(w)
∣∣ 6 1. (4.9)

Therefore,

|J1| 6 E
∣∣∣∣1− 1

2λ
E {D∆ |W}

∣∣∣∣,
|J3| 6 E |R|.

(4.10)

For J2, observe that f ′z(w) = wf(w) − 1(w > z) +
{

1 − Φ(z)
}
, and both wfz(w) and

EJP 0 (2021), paper 0.
Page 9/??

http://www.imstat.org/ejp/

https://doi.org/10.1214/YY-TN
http://www.imstat.org/ejp/


Generalized U -statistics

1(w > z) are increasing functions (see, e.g. ? , Lemma 2.3]), by ??,

|J2| 6
1

2λ

∣∣∣∣E{D ∫ 0

−∆

{(W + u)fz(W + u)−Wf ′z(W )} du
}∣∣∣∣

+
1

2λ

∣∣∣∣E{D ∫ 0

−∆

{1(W + u > z)− 1(W > z)} du
}∣∣∣∣

6
1

2λ
E
{∣∣E {D∗∆ |W}∣∣(|Wfz(W )|+ 1(W > z)

)}
6 J21 + J22,

(4.11)

where

J21 =
1

2λ
E
{∣∣E {D∗∆ |W}∣∣ · ∣∣Wfz(W )

∣∣},
J22 =

1

2λ
E
{∣∣E {D∗∆ |W}∣∣1(W > z)

}
.

Then, by ??, |J2| 6 1
λ E
∣∣E {D∗∆ |W}∣∣. This proves ?? together with ??.

4.3 Proof of ??

In this subsection, we apply ?? to prove ??. By ??, we have

E{D |X} = λ(T + U −R).

Let T ′ = φ(X ′) + U(X ′), then we have (T, T ′) is exchangeable. Then, by ??, we have

sup
z∈R

∣∣P[T 6 z]− Φ(z)
∣∣

6 E
∣∣1− 1

2λ
E{D(T − T ′) |X}

∣∣
+

1

λ
E
∣∣E{D∗(T − T ′) |X}∣∣+ E |U |+ E |R|

6 E
∣∣1− 1

2λ
E{D(φ(X)− φ(X ′)) |X}

∣∣
+

1

λ
E
∣∣E{D∗(φ(X)− φ(X ′)) |X}

∣∣+ E |U |+ E |R|+ 3

2λ
E |D(R−R′)|.

This completes the proof by recalling that ∆ = φ(X)− Φ(X ′).

5 Proofs of ??????

In this section, we give the proofs of ??????.

5.1 Proof of ??

Without loss of generality, we assume that n > max(2, k2), otherwise the inequality is
trivial. We use ?? to prove this theorem. For each α = (α(1), . . . , α(k)) ∈ In,k, let

r(Xα(1), . . . , Xα(k);Yα(1),α(2), . . . , Yα(k−1),α(k))

= f(Xα(1), . . . , Xα(k);Yα(1),α(2), . . . , Yα(k−1),α(k))−
k∑
j=1

f1(Xα(j)).
(5.1)

Let σn =
√

Var{Sn,k(f)}, and

T =
1

σn
(Sn,k(f)− E{Sn,k(f)}) = W + U,

EJP 0 (2021), paper 0.
Page 10/??

http://www.imstat.org/ejp/

https://doi.org/10.1214/YY-TN
http://www.imstat.org/ejp/


Generalized U -statistics

where

W =
1

σn

(
n− 1

n− k

) n∑
i=1

f1(Xi),

U =
1

σn

∑
α∈In,k

r(Xα(1), . . . , Xα(k);Yα(1),α(2), . . . , Yα(k−1),α(k)).

By orthogonality we have Cov(W,U) = 0, and thus

σ2
n > Var(W ) =

(
n− 1

n− k

)2

Var

( n∑
j=1

f1(Xj)

)
=

(
n

k

)2
k2σ2

1

n
. (5.2)

Let (X ′1, . . . , X
′
n) be an independent copy of (X1, . . . , Xn). For each i = 1, . . . , n, define

X(i) = (X
(i)
1 , . . . , X

(i)
n ) where

X
(i)
j =

{
Xj if j 6= i,

X ′i if j = i,

and let

U (i) =
1

σn

∑
α∈In,k

r(X
(i)
α(1), . . . , X

(i)
α(k);Yα(1),α(2), . . . , Yα(k−1),α(k)).

The following lemma provides the upper bounds of E{R2
1} and E{(R1 −R(i)

1 )2}.
Lemma 5.1. For n > 2 and k > 2,

E{U2} 6 (k − 1)2τ2

2(n− 1)σ2
1

(5.3)

E{(U − U (i))2} 6 2(k − 1)2τ2

n(n− 1)σ2
1

. (5.4)

The proof of ?? is put in the appendix.
Now, we apply ?? to prove the Berry–Esseen bound for T . To this end, let ξi =

σ−1
n f1(Xi) for each 1 6 i 6 n. Let I be a random index uniformly distributed over
{1, . . . , n}, which is independent of all others. Let

D = ∆ =
1

σn

(
n− 1

n− k

)(
f1(XI)− f1(X ′I)

)
,

then it follows that

E{D |W} =
1

n
W.

Thus, ?? is satisfied with λ = 1/n and R = 0. Moreover, we have

1

2λ
E{D∆ |X} =

1

2σ2
n

(
n− 1

n− k

)2 n∑
i=1

(
f1(Xi)− f1(X ′i)

)2
,

1

λ
E{|D|∆ |X} =

1

σ2
n

(
n− 1

n− k

)2 n∑
i=1

(
f1(Xi)− f1(X ′i)

)∣∣f1(Xi)− f1(X ′i)
∣∣.

Also,

1

2λ
E{D∆} = E{W 2} = 1− E{U2}, E{|D|∆} = 0.
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Therefore, by the Cauchy inequality and ??, we have for n > max(2, k2),

E

∣∣∣∣ 1

2λ
E{D∆ |X} − 1

∣∣∣∣
6 E

∣∣∣∣ 1

2λ
E{D∆ |X} − 1

2λ
E{D∆}

∣∣∣∣+ E{U2}

6
1

2σ2
n

(
n− 1

n− k

)2(
Var

{ n∑
i=1

(
f1(Xi)− f1(X ′i)

)2})1/2

+
(k − 1)2τ2

2(n− 1)σ2
1

6
2τ2

√
nσ2

1

+
(k − 1)τ2

√
nσ2

1

6
(k + 1)τ2

√
nσ2

1

,

where we used ?? in the last line. Using the same argument, we have for n > max{2, k2},

E

∣∣∣∣ 1λ E{|D|∆ |X}
∣∣∣∣

6
1

σ2
n

(
n− 1

n− k

)2(
Var

{ n∑
i=1

(
f1(Xi)− f1(X ′i)

)})1/2

6
4τ2

√
nσ2

1

.

Now we give the bounds for U and U (i). We have two cases. For the case where k = 1,
then it follows that U = 0 and U (i) = 0. As for k > 2, noting that (n− 1)−1/2 6 2n−1/2 for
n > 2, by ?? and the Cauchy inequality, we have

E|U | 6 0.71(k − 1)τ

(n− 1)1/2σ1
6

2(k − 1)τ√
nσ1

,

and

n∑
i=1

E{|(ξi − ξ′i)(U − U (i))|} 6 2.84(k − 1)τ

(n− 1)1/2σ1
6

6(k − 1)τ√
nσ1

.

By ?? and noting that σ2
1 6 E{f(X{α};Y{α})

2} 6 τ1/2, we have

sup
z∈R

∣∣P[T 6 z]− Φ(z)
∣∣ 6 (k + 5)τ2

√
nσ2

1

+
11(k − 1)τ√

nσ1

6
12kτ2

√
nσ2

1

.

This proves ??.

5.2 Proof of Theorem 2.2

We first prove a proposition for the Hoeffding decomposition.

Proposition 5.2. For A ⊂ [n], B ⊂ [n]2 such that (A,B) 6= (∅,∅), and for any Ã, B̃ such
that Ã ⊂ A and B̃ ⊂ B but (Ã, B̃) 6= (A,B), we have

E
{
fA,B(XA;YB)

∣∣ XÃ, YB̃
}

= 0. (5.5)

Proof. If |A|+ |B| = 1, then for (Ã, B̃) = (∅,∅), by definition,

E
{
fA,B(XA;YB)

∣∣ XÃ, YB̃
}

= E
{
fA,B(XA;YB)

}
= E{f(X[k];Y[k]2)} − E{f(X[k];Y[k]2)} = 0.
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We prove the proposition by induction. Assume that ?? holds for 1 6 |A|+ |B| 6 m. Let
AÃ,B̃ = {(A′, B′) : A′ ⊂ Ã, B′ ⊂ B̃, } and let Ac

Ã,B̃
= {(A′, B′) : A′ ⊂ A,B′ ⊂ B, (A′, B′) 6=

(A,B)} \ Ac
Ã,B̃

. Reordering ?? by the inclusive-exclusive formula we have

fA,B(XA;YB) = E{f(X[k];Y[k]2)|XA, YB} −
∑

|A′|+|B′|<|A|+|B|

fA′,B′(XA′ ;YB′)

= E{f(X[k];Y[k]2)|XA, YB} −
∑

(A′,B′)∈AÃ,B̃

fA′,B′(XA′ ;YB′)

−
∑

(A′,B′)∈Ac
Ã,B̃

fA′,B′(XA′ ;YB′)

= E{f(X[k];Y[k]2)|XA, YB} − E{f(X[k];Y[k]2)|XÃ, YB̃}

−
∑

(A′,B′)∈Ac
Ã,B̃

fA′,B′(XA′ ;YB′).

By the induction assumption, we have∑
(A′,B′)∈Ac

Ã,B̃

E{fA′,B′(XA′ ;YB′)|XÃ, YB̃} = 0.

Then, the desired result follows.

Let

An,` = {α = (α(1), . . . , α(`)) : 1 6 α(1) 6= . . . 6= α(`) 6 n}.

Then, In,` ⊂ An,`. For A ⊂ [`] and B ∈ [`]2 and α = (α(1), . . . , α(`)) ∈ An,`, write

α(A) = (α(i))i∈A, α(B) =
(
(α(i), α(j))

)
(i,j)∈B ,

Xα(A) = (Xi)i∈α(A), Yα(B) = (Yi,j)(i,j)∈α(B).

Moreover, for any α ∈ In,` and fA,B : X |A| × Y |B| → R, let

S̃n,`(fA,B) =
∑

α∈An,`

fA,B(Xα(A);Yα(B)),

and similarly, Sn,`(fA,B) can be represented as
∑
α∈In,` fA,B(Xα(A);Yα(B)).

Let (Y ′1,1, . . . , Y
′
n−1,n) be an independent copy of Y = (Y1,1, . . . , Yn−1,n). For any

(i, j) ∈ An,2, let Y (i,j) = (Y
(i,j)
1,1 , . . . , Y

(i,j)
n−1,n) with

Y (i,j)
p,q =

{
Yp,q if {p, q} 6= {i, j},
Y ′p,q if {p, q} = {i, j},

for (p, q) ∈ In,2.

Then, it follows that for each (i, j) ∈ An,2, ((X,Y ), (X,Y (i,j))) is an exchangeable pair. For

any B ⊂ [n]2, let Y (i,j)
B = (Y

(i,j)
p,q )(p,q)∈B. For any A ⊂ [`], B ⊂ [`]2, α = (α(1), . . . , α(`)) ∈

In,` and fA,B : X |A| × Y |B| → R, define

Y
(i,j)
α(B) = (Y

(i,j)
α(p),α(q))(p,q)∈B ,

S
(i,j)
n,` (fA,B) =

∑
α∈In,`

fA,B(Xα(A);Y
(i,j)
α(B)),

S̃
(i,j)
n,` (fA,B) =

∑
α∈An,`

fA,B(Xα(A), Y
(i,j)
α(B)).
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Let f(`) be defined as in ??, and it follows that

f =

k∑
`=0

f(`), f(0) = E{f(X[k];Y[k]2)}, Sn,k(f(0)) = E{Sn,k(f)}.

Moreover, by assumption, as f has principal degree d, and it follows that f(`) ≡ 0 for
` = 1, . . . , d − 1. Let σn = (Var{Sn,k(f)})1/2 and σn,` = (Var{Sn,k(f(`))})1/2. The next
lemma estimates the upper and lower bounds of σ2

n and σ2
n,d. The proof is similar to that

of Lemma 4 of ? ], and we omit the details.

Lemma 5.3. We have for each (i, j) ∈ An,2 and d 6 ` 6 k,

σ2
n,` =

∑
(A,B):vA,B=`

n!(n− `)!σ2
A,B

(n− k)!2(k − `)!2|Aut(GA,B)|
6 Cn2k−`τ2, (5.6)

σ2
n =

k∑
`=d

∑
(A,B):vA,B=`

n!(n− `)!σ2
A,B

(n− k)!2(k − `)!2|Aut(GA,B)|
6 Cn2k−dτ2, (5.7)

E{(Sn,k(f(`))− S
(i,j)
n,k (f(`)))

2} 6 Cn2k−`−2τ2, (5.8)

and

σ2
n > σ2

n,d > cn2k−dσ2
min. (5.9)

where |Aut(G)| is the number of the automorphisms of G, and c, C > 0 are some absolute
constant.

For any A ⊂ [k] and B ⊂ [k]2, let

µA,B :=
1

|Aut(GA,B)||B|

(
n− vA,B
n− k

)
,

νA,B := |B| × µA,B =
1

|Aut(GA,B)|

(
n− vA,B
n− k

)
,

and for any α ∈ An,` (` = 1, . . . , k), let

ξ
(i,j)
α(A,B) = fA,B(Xα(A);Yα(B))− fA,B(Xα(A);Y

(i,j)
α(B)).

Recall that GA,B is the graph generated by (A,B). For any (Aj , Bj) for j = 1, 2,
we simply write vj = vAj ,Bj as the number of nodes of the graph GAj ,Bj . Recall that
Gf,d = {(A,B) : A ⊂ [d], B ⊂ [d]2, σA,B > 0, vA,B = d} and we similarly define Gf,d+1 =

{(A,B) : A ⊂ [d+ 1], B ⊂ [d+ 1]2, σA,B > 0, vA,B = d+ 1}. We have the following lemmas.

Lemma 5.4. For all (A1, B1), (A2, B2) ∈ Gf,d such that GA1,B1
and GA2,B2

are connected,
we have

Var

{ ∑
(i,j)∈An,2

( ∑
α1∈A(i,j)

n,d

ξ
(i,j)
α1(A1,B1)

)( ∑
α2∈A(i,j)

n,d

ξ
(i,j)
α2(A2,B2)

)}
6 Cn2d−1τ4.

Lemma 5.5. Assume that k > d+ 1. For all (A1, B1), (A2, B2) ∈ Gf,d ∪ Gf,d+1, we have

Var

{ ∑
(i,j)∈An,2

( ∑
α1∈A(i,j)

n,v1

ξ
(i,j)
α1(A1,B1)

)∣∣∣∣ ∑
α2∈A(i,j)

n,v2

ξ
(i,j)
α2(A2,B2)

∣∣∣∣
}

6 Cn2 max{v1,v2}−2τ4.

We are now ready to give the proof of ??.
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Proof of ??. We assume that n > max{k, 2} without loss of generality, otherwise the
result is trivial. Recall that f(d) is defined in ??. Write T = σ−1

n (Sn,k(f) − E{Sn,k(f)}),
and

W = σ−1
n Sn,k(f(d)), U = T −W = σ−1

n

k∑
`=d+1

Sn,k(f(`)). (5.10)

Here, if d + 1 > k, then set
∑k
`=d+1 Sn,k(f(`)) = 0. With a slight abuse of notation, we

write (A,B) ∈ Gf,d if GA,B ∈ Gf,d. We have

W =
1

σn

∑
α∈An,d

∑
(A,B)∈Gf,d

(
n− d
k − d

)
fA,B(Xα(A);Yα(B))

|Aut(GA,B)|

=
1

σn

∑
α∈An,d

∑
(A,B)∈Gf,d

(
n− d
k − d

)
fA,B(Xα(A);Yα(B))

|Aut(GA,B)|
,

because by assumption, fA,B ≡ 0 for all (A,B) ∈ Gf,d.
For each (i, j) ∈ An,2, let

W (i,j) =
1

σn
S

(i,j)
n,k (f(d)), U (i,j) = σ−1

n

k∑
`=d+1

S
(i,j)
n,k (f(`)).

Let (I, J) be a random 2-fold index uniformly chosen in An,2, which is independent of
all others. Then, ((X,Y ), (X,Y (I,J))) is an exchangeable pair. Let

∆ = W −W (I,J) =
1

σn

∑
α∈An,d

∑
(A,B)∈Gf,d

νA,Bξ
(I,J)
α(A,B).

Also, define

D =
1

σn

∑
α∈An,d

∑
(A,B)∈Gf,d

µA,Bξ
(I,J)
α(A,B).

Then, we have D is antisymmetric with respect to (X,Y ) and (X,Y (I,J)).

Let A(i,j)
n,d = {α ∈ An,d : {i, j} ⊂ {α}}. Then,

E{D |X,Y }

=
1

n(n− 1)σn

∑
(i,j)∈An,2

∑
α∈A(i,j)

n,d

∑
(A,B)∈Gf,d

µA,B E
{
ξ

(i,j)
α(A,B) |X,Y

}
.

By ??,

E{fA,B(Xα(A);Y
(i,j)
α(B)) |X,Y }

= E{fA,B(Xα(A);Yα(B)) |XA, YB \ {Yi,j}}

=

{
0 if (i, j) ∈ B,

fA,B(Xα(A);Yα(B)) otherwise.

Moreover, note that for α ∈ An,d,∑
(i,j)∈An,2

1((i, j) ∈ α(B)) = 2|B|,
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Generalized U -statistics

and thus

E{D |X,Y }

=
1

n(n− 1)σn

∑
α∈An,d

∑
(A,B)∈Gf,d

µA,BfA,B(Xα(A);Yα(B)) (5.11)

×
∑

(i,j)∈An,2

1((i, j) ∈ α(B))

=
2

n(n− 1)σn

∑
α∈An,d

∑
(A,B)∈Gf,d

νA,BfA,B(Xα(A);Yα(B))

=
2

n(n− 1)
W. (5.12)

Thus, ?? is satisfied with λ = 2/(n(n− 1)) and R = 0. Moreover, by exchangeability,

E{D∆} = 2E{DW} = 2λE{W 2} = 2λσ2
n,d/σ

2
n. (5.13)

Then, we have

1

2λ
E{D∆ |X,Y, Y ′}

=
1

4σ2
n

∑
(A1,B1)∈Gf,d

∑
(A2,B2)∈Gf,d

µA1,B1
νA2,B2

×
∑

(i,j)∈An,2

( ∑
α∈A(i,j)

n,d

ξ
(i,j)
α(A1,B1)

)( ∑
α∈A(i,j)

n,d

ξ
(i,j)
α(A2,B2)

)
.

Now, by the Cauchy inequality, ?? and ????, we have

E

∣∣∣∣ 1

2λ
E{D∆ |X,Y, Y ′} − 1

∣∣∣∣
6 E

∣∣∣∣ 1

2λ
E{D∆ |X,Y, Y ′} − 1

2λ
E{D∆}

∣∣∣∣+
σ2
n − σ2

n,d

σ2
n

6
1

4σ2
n

∑
(A1,B1)∈Gf,d

∑
(A2,B2)∈Gf,d

µA1,B1
νA2,B2

×

(
Var

{ ∑
(i,j)∈An,2

( ∑
α∈A(i,j)

n,d

ξ
(i,j)
α(A1,B1)

)( ∑
α∈A(i,j)

n

ξ
(i,j)
α(A2,B2)

)})1/2

+
σ2
n − σ2

n,d

σ2
n

6 Cn−1/2.
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Taking D∗ = |D|, by ??,

1

λ
E
∣∣E{D∗∆ |X,Y, Y ′}∣∣
=

1

λ
E
∣∣E{D∗∆ |X,Y, Y ′}∣∣

6
1

4σ2
n

∑
(A1,B1)∈Gf,d

∑
(A2,B2)∈Gf,d

µA1,B1νA2,B2

×

(
Var

{ ∑
(i,j)∈An,2

∣∣∣∣ ∑
α∈A(i,j)

n,d

ξ
(i,j)
α(A1,B1)

∣∣∣∣( ∑
α∈A(i,j)

n

ξ
(i,j)
α(A2,B2)

)})1/2

6 Cn−1.

Now, by ?? and ??, we have

E |U |2 6 Cσ−2
n,d(k − d)

k∑
`=d+1

E(S2
n,k(f(`))) 6 Cn−1,

E(U − U (i,j))2 6 Cσ−2
n,d(k − d)

k∑
`=d+1

E{(Sn,k(f(`))− S
(i,j)
n,k (f(`)))

2} 6 Cn−3,

E(W −W (i,j))2 6 Cσ−2
n,dE{(Sn,k(f(d))− S

(i,j)
n,k (f(d)))

2} 6 Cn−2.

Thus,

E |U | 6 Cn−1/2,

1

λ
E
∣∣∆(U − U (I,J))

∣∣ =
∑
i∈In,2

E{|(W −W (i,j))(U − U (i,j))|}

6 Cn−1/2.

Applying ??, we obtain the desired result.

5.3 Proof of ??

The proof of ?? is similar to that of ??. Without loss of generality, we assume that
k > d+ 1, otherwise the proof is even simpler.

For any A ⊂ [k] and B ⊂ [k]2, recall that

µA,B :=
1

|Aut(GA,B)||B|

(
n− vA,B
n− k

)
,

νA,B := |B|µA,B =
1

|Aut(GA,B)|

(
n− vA,B
n− k

)
.

By ??, we have there exists a Hoeffding decomposition of g as follows:

g(y) =
∑

B⊂[k]2

gB(yB),

where y = (y1,2, . . . , yk−1,k) and yB = (yi,j : (i, j) ∈ B). Also, for any B ⊂ [k]2 and α ∈ An,`
(` = 1, . . . , k), let

η
(i,j)
α(B) = gB(Yα(B))− gB(Y

(i,j)
α(B)).
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For any B ∈ [k]2, let VB be the node set of the graph with edge set B. For any r ∈ VB,
let B(r) = {(i, j) : (i, j) ∈ B, i 6= r, j 6= r}. Recall that Gf,d+1 = {(A,B) : A ⊂ [k], B ⊂
[k]2, vA,B = d+ 1, σA,B > 0} and G̃f,d = {(A,B) ∈ Gf,d : GA,B is strongly connected.}.

We need to apply the following lemma in the proof of ??.

Lemma 5.6. Assume that k > d + 1. For all (Aj , Bj) ∈ G̃f,d ∪ Gf,d+1 and let vj = vAj ,Bj
for j = 1, 2, we have

Var

{ ∑
(i,j)∈An,2

( ∑
α1∈A(i,j)

n,v1

η
(i,j)
α1(B1)

)( ∑
α2∈A(i,j)

n,v2

η
(i,j)
α2(B2)

)}
6 Cn2d−2τ4.

Proof of ??. Again, write T = σ−1
n (Sn,k(g)− E{Sn,k(g)}), and let

W = σ−1
n (Sn,k(g(d)) + Sn,k(g(d+1))), U = σ−1

n

k∑
`=d+2

Sn,k(g(`)). (5.14)

Here, if d + 1 > k, then set
∑k
`=d+1 Sn,k(g(`)) = 0. Then, T = W + U . Now we apply ??

again to prove the desired result. To this end, we need to construct an exchangeable
pair. For each (i, j) ∈ An,2, let

W (i,j) =
1

σn
(S

(i,j)
n,k (g(d)) + S

(i,j)
n,k (g(d+1))), U (i,j) = σ−1

n

k∑
`=d+2

S
(i,j)
n,k (g(`)).

By assumption, we have

W =
1

σn

∑
(A,B)∈G̃f,d∪Gf,d+1

∑
α∈An,v(G)

νA,BgA,B(Xα(A);Yα(B)).

Let (I, J) be a random 2-fold index uniformly chosen in An,2, which is independent of
all others. Then, ((X,Y ), (X,Y (I,J))) is an exchangeable pair. Let

∆ = W −W (I,J) =
1

σn

( ∑
(A,B)∈G̃f,d

∑
α∈An,d

νA,Bη
(I,J)
α(B)

)
.

Also, define

D =
1

σn

( ∑
(A,B)∈G̃f,d

∑
α∈An,d

µA,Bη
(I,J)
α(B)

)
.

Then, D is antisymmetric with respect to (X,Y ) and (X,Y (I,J)).
Following a similar argument leading to ??,

E{D |X,Y } =
2

n(n− 1)
W. (5.15)

Thus, ?? is satisfied with λ = 2/(n(n− 1)) and R = 0. Moreover, by exchangeability,

E{D∆} = 2E{DW} = 2λE{W 2} = 2λ(σ2
n,d + σ2

n,d+1)/σ2
n. (5.16)

Now, by the Cauchy inequality, ?? and ????, we have

E

∣∣∣∣ 1

2λ
E{D∆ |X,Y, Y ′} − 1

∣∣∣∣
6 E

∣∣∣∣ 1

2λ
E{D∆ |X,Y, Y ′} − 1

2λ
E{D∆}

∣∣∣∣+
σ2
n − σ2

n,d − σ2
n,d+1

σ2
n

6 Cn−1.

EJP 0 (2021), paper 0.
Page 18/??

http://www.imstat.org/ejp/

https://doi.org/10.1214/YY-TN
http://www.imstat.org/ejp/


Generalized U -statistics

With D∗ = |D|, and by ?? again,

1

λ
E
∣∣E{D∗∆ |X,Y, Y ′}∣∣ 6 Cn−1.

Now, by ?? and ??, we have

E |U |2 6 Cσ−2
n (k − d)

k∑
`=d+2

E(S2
n,k(g(`))) 6 Cn−2,

E(U − U (i,j))2 6 Cσ−2
n (k − d)

k∑
`=d+2

E{(Sn,k(g(`))− S
(i,j)
n,k (g(`)))

2} 6 Cn−4,

E(W −W (i,j))2 6 Cσ−2
n

{
‖Sn,k(g(d))− S

(i,j)
n,k (g(d))‖22

+ ‖Sn,k(g(d+1))− S
(i,j)
n,k (g(d+1))‖22

}
6 Cn−2.

Thus,

E |U | 6 Cn−1,

1

λ
E
∣∣∆(U − U (I,J))

∣∣ 6 C
∑

(i,j)∈An,2

E{|(W −W (i,j))(U − U (i,j))|}

6 Cn−1.

Applying ??, we obtain the desired result.

6 Proof of other results

6.1 Proof of Theorem 3.2

As f inj
F does not dependent on X if κ ≡ p for some 0 < p < 1. Fix F . Define

ginj(Y ) = f inj
F (X;Y )

and by ??, we have ginj has the following decomposition:

ginj(Y ) =
∑

B⊂[k]2

ginj
B (YB). (6.1)

By [? , p. 361], we have

ginj
{(1,2)}(y1,2) =

2e(F )(v(F )− 2)!

|Aut(G)|
pe(F )−1(y1,2 − p) 6= 0.

Therefore, by ?? with d = 2, we complete the proof.

6.2 Proof of Theorem 3.3

Again, let

gind(Y ) = f ind
F (X;Y ),

and similar to ??, we have

gind(Y ) =
∑

B⊂[k]2

gind
B (YB).
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Recall that e(F ) is the number of 2-stars in F and t(F ) is the number of triangles in
F . Let

ē(F ) =

(
v(F )

2

)−1

e(F ), s̄(F ) =

(
v(F )

3

)−1
s(F )

3
, t̄(F ) =

(
v(F )

3

)−1

t(F ).

Let

N(F ) =
v(F )!

|Aut(F )|
pe(F )(1− p)(

v(F )
2 )−e(F ).

By ? ], letting B1 = {(1, 2)}, B2 = {(1, 2), (1, 3)} and B3 = {(1, 2), (1, 3), (2, 3)}, we have

gind
B1

(y) =
N(F )

p(1− p)
(ē(F )− p)(y − p),

gind
B2

(y12, y13) =
N(F )

p2(1− p)2
(s̄(F )− 2pē(F ) + p2)

× ((y12 − p)(y13 − p),

gind
B3

(y12, y13, y23) =
N(F )

p3(1− p)3
(t̄(F )− 3ps̄(F ) + 3p2ē(F )− p3)

× (y12 − p)(y13 − p)(y23 − p).

We now consider the following three cases.

Case 1. If e(F ) 6= p
(
v(F )

2

)
. In this case, we have gind

B1
6≡ 0. Then, by ??, we have ?? holds.

Case 2. If ē(F ) = p and s̄(F ) 6= p2. In this case, we have

gind
B1
≡ 0, gind

B2
6≡ 0.

However, the graph generated by B2 is a 2-star, which is not strongly connected. Then,
by ??, we have ?? holds.

Case 3. If ē(F ) = p, s̄(F ) = p2 and t̄(F ) 6= p3. In this case, we have

gind
B1
≡ 0, gind

B2
≡ 0, gind

B3
6≡ 0.

Because the graph generated by B3 is a triangle, which is strongly connected. Then, by
??, we have ?? holds.

A Proofs of some lemmas

A.1 Proof of Lemma 5.1

Proof of ??. We write {α} = {α(1), . . . , α(k)} for any α = (α(1), . . . , α(k)) ∈ An,k. Also,
write rα = r(Xα(1), . . . , Xα(k);Yα(1),α(2), . . . , Yα(k−1),α(k)). Now, observe that

Var

{ ∑
α∈In,k

rα

}
=

1

σ2
n

∑
α∈In,k

∑
α′∈In,k

Cov
(
rα, rα′

)
. (A.1)

Note that if {α} ∩ {α′} = ∅, then rα and rα′ are independent, then clearly it follows
that

Cov
(
rα, rα′

)
= 0 (A.2)

if {α} ∩ {α′} = ∅. If there exists i ∈ {1, . . . , n} such that {α} ∩ {α′} = {i}, then

Cov
(
rα, rα′)

)
= E

{
Cov

(
rα, rα′

∣∣ Xi

)}
+ Cov

(
E{rα|Xi},E{rα′ |Xi}

)
. (A.3)
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By independence, we have the first term of ?? is 0. For the second term, note that for
any i ∈ {α}, then E{rα|Xi} = 0, and thus the second term of ?? is also 0. Therefore,

Cov
(
rα, rα′

)
= 0, if |{α} ∩ {α′}| = 1. (A.4)

For any α and α′ such that |{α} ∩ {α′}| > 2, by the Cauchy inequality, we have

Cov
(
rα, rα′

)
6 Var

(
rα
)
.

Recall that rα and g(Xj) are orthogonal for every j ∈ {α}. By ??, we have

Var
(
rα
)

= Var
(
f(Xα(1), . . . , Xα(k);Yα(1),α(2), . . . , Yα(k−1),α(k))

)
−
∑
j∈{α}

E{f1(Xj)
2}

6 τ2.

Thus, it follows that ∣∣Cov
(
rα, rα′

)∣∣ 6 τ2, if |{α} ∩ {α′}| > 2. (A.5)

Combining ??????????, we have

E{U2} 6 τ2

σ2
n

∑
α∈In,k

∑
α′∈In,k

1(|{α} ∩ {α′}| > 2)

6
nτ2

k2σ2
1

(
n

k

)−1(
k

2

)(
n− k
k − 2

)
6

(k − 1)2τ2

2(n− 1)σ2
1

.

(A.6)

This proves ??.
Now we prove ??. Let I(i)

n,k = {α = {α(1), . . . , α(k)} : α(1) < · · · < α(k), i ∈ {α}}. Note
that

U − U (i) =
1

σn

∑
α∈I(i)n,k

r
(i)
{α}.

where

r(i)
α = rα − r(X(i)

α(1), . . . , X
(i)
α(k);Yα(1),α(2), . . . , Yα(k−1),α(k)).

For each α, by independence, we have

Var
(
r(i)
α

)
= 2E{Var

(
rα
∣∣ Xj , j ∈ {α} \ {i}, Yα(1),α(2), . . . , Yα(k−1),α(k)

)
}

6 2 Var
(
rα
)
6 2τ2.

Similar to ??, we have

E{(U − U (i))2} =
1

σ2
n

∑
α∈I(i)n,k

∑
α′∈I(i)n,k

Cov
(
r(i)
α , r

(i)
α′

)

6
2nτ2

k2σ2
1

(
n

k

)−2 ∑
α∈I(i)n,k

∑
α′∈I(i)n,k

1(|{α} ∩ {α′}| > 2)

6
2n(k − 1)τ2

k2σ2
1

(
n

k

)−2(
n− 1

k − 1

)(
n− k
k − 2

)
6

2(k − 1)2τ2

n(n− 1)σ2
1

.

This completes the proof.
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A.2 Proof of Lemma 5.3

Recall that {α} = {α(1), . . . , α(`)} for α ∈ An,`. To prove ??, we need the following
lemma.

Lemma A.1. Let (A1, B1), (A2, B2) ∈ Gf,d, (i, j), (i′, j′) ∈ An,2, α1, α2 ∈ A(i,j)
n,d and α′1, α

′
2 ∈

A(i′,j′)
n,d . Let

s = |{α1} ∩ {α2}|, t = |{α′1} ∩ {α′2}|.

If |({α1} ∪ {α2}) ∩ ({α′1} ∩ {α′2})| 6 2d− (s+ t), then

Cov
{
ξ

(i,j)
α1(A1,B1)ξ

(i,j)
α2(A2,B2), ξ

(i′,j′)
α′1(A1,B1)ξ

(i′,j′)
α′2(A2,B2)

}
= 0. (A.7)

Proof of ??. Let

V0 = {α1} ∩ {α2}, V1 = {α1} \ V0, V2 = {α2} \ V0, s = |V0|,
V ′0 = {α′1} ∩ {α′2}, V ′1 = {α′1} \ V ′0 , V ′2 = {α′2} \ V ′0 , t = |V ′0 |.

(A.8)

Then, we have V1 ∩ V2 = ∅, V ′1 ∩ V ′2 = ∅, 2 6 s, t 6 d. Without loss of generality, assume
that s 6 t.

If 2d − (s + t) = 0, which is equivalent to s = d, t = d, then {α1} = {α2} and

{α′1} = {α′2}. If {a1} ∩ {a′1} = ∅, then (ξ
(i,j)
α1(A1,B1), ξ

(i,j)
α2(A2,B2)) and (ξ

(i′,j′)
α′1(A1,B1), ξ

(i′,j′)
α′2(A2,B2))

are independent, which implies that ?? holds.
If 2d− (s+ t) > 0 and |({α1} ∪ {α2}) ∩ ({α′1} ∪ {α′2})| < 2d− (s+ t), then there exists

r ∈ [n] such that r ∈ (V ′1 ∪ V ′2) \ ({α1, α2}). Now, assume that r ∈ V ′2 \ ({α1, α2}) without
loss of generality. Let

Fr = σ(Xp, Yp,q, p, q ∈ [n] \ {r}) ∨ σ(Y ′i′,j′). (A.9)

Therefore, we have ξ(i,j)
α1(A1,B1), ξ

(i,j)
α2(A2,B2), ξ

(i′,j′)
α′1(A1,B1) ∈ Fr. Then, by ??,

E{ξ(i′,j′)
α′2(A2,B2) | Fr}

= E
{
fG1

(
Xα′2(A1,B1);Yα′2(A1,B1)

)
− fG1

(
Xα′2(A1,B1);Y

(i′,j′)
α′2(A1,B1)

) ∣∣∣ Fr}
= 0. (A.10)

Hence,

E
{
ξ

(i′,j′)
α′1(A1,B1)ξ

(i′,j′)
α′2(A2,B2) | Fr

}
= 0,

which further implies that

E
{
ξ

(i′,j′)
α′1(A1,B1)ξ

(i′,j′)
α′2(A2,B2)

}
= 0,

and
Cov

{
ξ

(i,j)
α1(A1,B1)ξ

(i,j)
α2(A2,B2), ξ

(i′,j′)
α′1(A1,B1)ξ

(i′,j′)
α′2(A2,B2)

}
= E{ξ(i,j)

α1(A1,B1)ξ
(i,j)
α2(A2,B2)ξ

(i′,j′)
α′1(A1,B1)ξ

(i′,j′)
α′2(A2,B2)}

= E
{
E
{
ξ

(i,j)
α1(A1,B1)ξ

(i,j)
α2(A2,B2)ξ

(i′,j′)
α′1(A1,B1)ξ

(i′,j′)
α′2(A2,B2) | Fr

}}
= E

{
ξ

(i,j)
α1(A1,B1)ξ

(i,j)
α2(A2,B2)ξ

(i′,j′)
α′1(A1,B1)E

{
ξ

(i′,j′)
α′2(A2,B2) | Fr

}}
= 0.

(A.11)
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If 2d−(s+t) > 0 and |({α1}∪{α2})∩({α′1}∩{α′2})| = 2d−(s+t), then either the following
two conditions holds: (a) there exists r ∈ V ′1 ∪ V ′2 \ ({α1} ∪ {α2}) or (b) V0 ∩ V ′0 = ∅. If (a)
holds, then following a similar argument that leading to ??, we have ?? holds.

If (b) is true, letting F = σ(X, {Yp,q : p, q ∈ V1 ∪ V2 ∪ V ′1 ∪ V ′2}), we have conditional on

F , (ξ
(i,j)
α1(A1,B1), ξ

(i,j)
α2(A2,B2)) is conditionally independent of (ξ

(i′,j′)
α′1(A1,B1), ξ

(i′,j′)
α′2(A2,B2)), and thus,

Cov
{
ξ

(i,j)
α1(A1,B1)ξ

(i,j)
α2(A2,B2), ξ

(i′,j′)
α′1(A1,B1)ξ

(i′,j′)
α′2(A2,B2)

}
= Cov

{
E
{
ξ

(i,j)
α1(A1,B1)ξ

(i,j)
α2(A2,B2) | F

}
,E
{
ξ

(i′,j′)
α′1(A1,B1)ξ

(i′,j′)
α′2(A2,B2) | F

}}
.

Without loss of generality, we assume that V1 ∪ V2 ∪ V ′1 ∪ V ′2 6= ∅, otherwise the argument
is even simpler. Moreover, we may assume that V1 6= ∅. Let F0 = σ(Y ′i,j , Yp,q : p, q ∈
V0), and we have ξ

(i,j)
α1(A1,B1) and ξ

(i,j)
α2(A2,B2) are conditionally independent given F ∨

F0. Moreover, by ??, E{ξ(i,j)
α1(A1,B1) | F ∨ F0} = E{ξ(i,j)

α2(A2,B2) | F ∨ F0} = 0, and thus

E{ξ(i,j)
α1(A1,B1)ξ

(i,j)
α2(A2,B2) | F} = 0. Therefore, we have under the condition (b),

Cov{ξ(i,j)
α1(A1,B1)ξ

(i,j)
α2(A2,B2), ξ

(i′,j′)
α′1(A1,B1)ξ

(i′,j′)
α′2(A2,B2)} = 0. (A.12)

Combining ???? we prove that ?? holds for |{α1, α2} ∩ {α′1, α′2}| = 2d − (s + t). This
completes the proof.

Proof of ??. In this proof, we denote by C a constant depending on k and d, which may
take different values in different places. Note that 2 6 s, t 6 d, and

Var

{ ∑
(i,j)∈An,2

( ∑
α1∈A(i,j)

n,d

ξ
(i,j)
α1(A1,B1)

)( ∑
α2∈A(i,j)

n,d

ξ
(i,j)
α2(A2,B2)

)}

=
∑

(i,j)∈An,2
(i′,j′)∈An,2

∑
α1∈A

(i,j)
n,d

α2∈A
(i,j)
n,d

∑
α′1∈A

(i′,j′)
n,d

α′2∈A
(i′,j′)
n,d

Cov
{
ξ

(i,j)
α1(A1,B1)ξ

(i,j)
α2(A2,B2), ξ

(i′,j′)
α′1(A1,B1)ξ

(i′,j′)
α′2(A2,B2)

}

=

d∑
s,t=2

∑
(i,j)∈An,2

(i′,j′)∈An,2

∑
α1∈A

(i,j)
n,d

α2∈A
(i,j)
n,d

∑
α′1∈A

(i′,j′)
n,d

α′2∈A
(i′,j′)
n,d

(A.13)

× Cov
{
ξ

(i,j)
α1(A1,B1)ξ

(i,j)
α2(A2,B2), ξ

(i′,j′)
α′1(A1,B1)ξ

(i′,j′)
α′2(A2,B2)

}
1(Os,t), (A.14)

where Os,t = {|{α1}∩{α2}| = s}∩{|{α′1}∩{α′2}| = t}. If |({α1}∪{α2})∩ ({α′1}∩{α′2})| 6
2d− (s+ t), by ?? in ??, we have

Cov
{
ξ

(i,j)
α1(A1,B1)ξ

(i,j)
α2(A2,B2), ξ

(i′,j′)
α′1(A1,B1)ξ

(i′,j′)
α′2(A2,B2)

}
= 0.

If |({α1}∪{α2})∩({α′1}∩{α′2})| > 2d−(s+t), then, recalling that (ξ
(i,j)
α1(A1,B1), ξ

(i,j)
α2(A2,B2))

d.
=

(ξ
(i′,j′)
α′1(A1,B1), ξ

(i′,j′)
α′2(A2,B2)), we have∣∣Cov{ξ(i,j)
α1(A1,B1)ξ

(i,j)
α2(A2,B2), ξ

(i′,j′)
α′1(A1,B1)ξ

(i′,j′)
α′2(A2,B2)}

∣∣
6 E{(ξ(i,j)

α1(A1,B1))
2(ξ

(i,j)
α2(A2,B2))

2}

6 C
(
E{f4

A1,B1
(Xα1(A1,B1);Yα1(A1,B1))}+ E{f4

A1,B1
(Xα2(A2,B2);Yα2(A2,B2))}

)
6 Cτ4. (A.15)
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Therefore, with

O1 = {|({α1} ∪ {α2}) ∩ ({α′1} ∪ {α′2})| > 2d− (s+ t)},

we have

Var

{ ∑
(i,j)∈An,2

( ∑
α∈A(i,j)

n,d

ξ
(i,j)
α(A1,B1)

)( ∑
α∈A(i,j)

n,d

ξ
(i,j)
α(A1,B1)

)}

6 Cτ4
d∑

s,t=0

∑
(i,j)∈An,2

(i′,j′)∈An,2

∑
α1∈A

(i,j)
n,d

α2∈A
(i,j)
n,d

∑
α′1∈A

(i′,j′)
n,d

α′2∈A
(i′,j′)
n,d

1(O1 ∩Os,t)

6 Cτ4
d∑

s,t=0

n(2d−s)+(2d−t)−(2d−s−t+1)

6 Cn2d−1τ4.

Proof of ??. If k < d + 1, then it follows that ξα(G) = 0 for all G ∈ Γd+1 and α ∈ An,d+1.
Therefore, we assume k > d+ 1 without loss of generality.

Observe that

Var

{ ∑
(i,j)∈An,2

( ∑
α1∈A(i,j)

n,v1

ξ
(i,j)
α1(A1,B1)

)∣∣∣∣ ∑
α2∈A(i,j)

n,v2

ξ
(i,j)
α2(A2,B2)

∣∣∣∣
}

=
∑

(i,j)∈An,2

∑
(i′,j′)∈An,2

Cov

{( ∑
α1∈A(i,j)

n,v1

ξ
(i,j)
α1(A1,B1)

)∣∣∣∣ ∑
α2∈A(i,j)

n,v2

ξ
(i,j)
α2(A2,B2)

∣∣∣∣,
( ∑
α′1∈A

(i′,j′)
n,v1

ξ
(i′,j′)
α′1(A1,B1)

)∣∣∣∣ ∑
α′2∈A

(i′,j′)
n,v2

ξ
(i′,j′)
α′2(A2,B2)

∣∣∣∣
}
.

(A.16)
Letting

F1 = σ(X) ∨ σ(Yp,q, Y
′
p,q : {p, q} 6= {i, j}),

and noting that ( ∑
α1∈A(i,j)

n,v1

ξ
(i,j)
α1(A1,B1)

)∣∣∣∣ ∑
α2∈A(i,j)

n,v2

ξ
(i,j)
α2(A2,B2)

∣∣∣∣
is anti-symmetric with respect to (Yij , Y

′
ij), we have

E

{( ∑
α1∈A(i,j)

n,v1

ξ
(i,j)
α1(A1,B1)

)∣∣∣∣ ∑
α2∈A(i,j)

n,v2

ξ
(i,j)
α2(A2,B2)

∣∣∣∣
}

= 0.

Now, we consider the following two cases. First, if {i, j} 6= {i′, j′}, we have( ∑
α′1∈A

(i′,j′)
n,v1

ξ
(i′,j′)
α′1(A1,B1)

)∣∣∣∣ ∑
α′2∈A

(i′,j′)
n,v2

ξ
(i′,j′)
α′2(A2,B2)

∣∣∣∣ is F1 measurable

and by anti-symmetry again,

E

{( ∑
α1∈A(i,j)

n,v1

ξ
(i,j)
α1(A1,B1)

)∣∣∣∣ ∑
α2∈A(i,j)

n,v2

ξ
(i,j)
α2(A2,B2)

∣∣∣∣
∣∣∣∣∣ F1

}
= 0.
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Therefore,

Cov

{( ∑
α1∈A(i,j)

n,v1

ξ
(i,j)
α1(A1,B1)

)∣∣∣∣ ∑
α2∈A(i,j)

n,v2

ξ
(i,j)
α2(A2,B2)

∣∣∣∣,
( ∑
α′1∈A

(i′,j′)
n,v1

ξ
(i′,j′)
α′1(A1,B1)

)∣∣∣∣ ∑
α′2∈A

(i′,j′)
n,v2

ξ
(i′,j′)
α′2(A2,B2)

∣∣∣∣
}

= 0 (A.17)

for {i, j} 6= {i′, j′}.
It suffices to consider the case where {i, j} = {i′, j′}. Observe that

Cov

{( ∑
α1∈A(i,j)

n,v1

ξ
(i,j)
α1(A1,B1)

)∣∣∣∣ ∑
α2∈A(i,j)

n,v2

ξ
(i,j)
α2(A2,B2)

∣∣∣∣,( ∑
α′1∈A

(i,j)
n,v1

ξ
(i,j)
α′1(A1,B1)

)∣∣∣∣ ∑
α′2∈A

(i,j)
n,v2

ξ
(i,j)
α′2(A2,B2)

∣∣∣∣
}

= E

{( ∑
α1∈A(i,j)

n,v1

ξ
(i,j)
α1(A1,B1)

)( ∑
α′1∈A

(i,j)
n,v1

ξ
(i,j)
α′1(A1,B1)

)∣∣∣∣( ∑
α2∈A(i,j)

n,v2

ξ
(i,j)
α2(A2,B2)

)( ∑
α′2∈A

(i,j)
n,v2

ξ
(i,j)
α′2(A2,B2)

)∣∣∣∣
}

=
∑

α1∈A(i,j)
n,v1

∑
α′1∈A

(i,j)
n,v1

E

{
ξ

(i,j)
α1(A1,B1)ξ

(i,j)
α′1(A1,B1)

∣∣∣∣ ∑
α2∈A(i,j)

n,v2

∑
α′2∈A

(i,j)
n,v2

ξ
(i,j)
α2(A2,B2)ξ

(i,j)
α′2(A2,B2)

∣∣∣∣
}
.

(A.18)
Let H1 = {α1}\{α′1} and H ′1 = {α′1}\{α1}. Let t = |α1∩α′1|, and then we have 2 6 t 6 v1.
Now, as ∑

α2∈A(i,j)
n,v2

∑
α′2∈A

(i,j)
n,v2

ξ
(i,j)
α2(A2,B2)ξ

(i,j)
α′2(A2,B2) =

∑
α2,α′2∈A1

ξ
(i,j)
α2(A2,B2)ξ

(i,j)
α′2(A2,B2)

+
∑

α2,α′2∈A2

ξ
(i,j)
α2(A2,B2)ξ

(i,j)
α′2(A2,B2),

where A1 = {α2, α
′
2 ∈ A

(i,j)
n,v2 : (H1 ∪H ′1) \ {α2, α

′
2} 6= ∅} and A2 = {α2, α

′
2 ∈ A

(i,j)
n,v2 : (H1 ∪

H ′1) \ {α2, α
′
2} = ∅}. If there exists r ∈ (H1 ∪H ′1) \ {α2, α

′
2}, letting Fr = σ(Xp, Yp,q, Y

′
p,q :

p, q ∈ [n] \ {r}), then we have∑
α2,α′2∈A1

ξ
(i,j)
α2(A2,B2)ξ

(i,j)
α′2(A2,B2) ∈ Fr,

and by orthogonality, we have

E
{
ξ

(i,j)
α1(A1,B1)ξ

(i,j)
α′1(A1,B1)|Fr

}
= 0.

Therefore, we have

E

{
ξ

(i,j)
α1(A1,B1)ξ

(i,j)
α′1(A1,B1)

∣∣∣∣ ∑
α2,α′2∈A1

ξ
(i,j)
α2(A2,B2)ξ

(i,j)
α′2(A2,B2)

∣∣∣∣
}

= 0.

Hence, by Cauchy’s inequality, we have∣∣∣∣∣E
{
ξ

(i,j)
α1(A1,B1)ξ

(i,j)
α′1(A1,B1)

∣∣∣∣ ∑
α2,α′2∈A

(i,j)
n,v2

ξ
(i,j)
α2(A2,B2)ξ

(i,j)
α′2(A2,B2)

∣∣∣∣
}∣∣∣∣∣

6 E

{∣∣ξ(i,j)
α1(A1,B1)ξ

(i,j)
α′1(A1,B1)

∣∣∣∣∣∣ ∑
α2,α′2∈A2

ξ
(i,j)
α2(A2,B2)ξ

(i,j)
α′2(A2,B2)

∣∣∣∣
}

6 Cτ2

√√√√E{∣∣∣∣ ∑
α2,α′2∈A2

ξ
(i,j)
α2(A2,B2)ξ

(i,j)
α′2(A2,B2)

∣∣∣∣2
}
.
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Following the similar argument in the proof of ??, and recalling that {α1 ∩ α′1} = t and
|A2| 6 Cn2(t−2)(nv2−v1 ∨ 1), we have

E

{∣∣∣∣ ∑
α2,α′2∈A2

ξ
(i,j)
α2(A2,B2)ξ

(i,j)
α′2(A2,B2)

∣∣∣∣2
}

6 Cn2(t−2)(nv2−v1 ∨ 1)τ4.

Therefore, we have∣∣∣∣∣E
{
ξ

(i,j)
α1(A1,B1)ξ

(i,j)
α′1(A1,B1)

∣∣∣∣ ∑
α2,α′2∈A

(i,j)
n,v2

ξ
(i,j)
α2(A2,B2)ξ

(i,j)
α′2(A2,B2)

∣∣∣∣
}∣∣∣∣∣ 6 Cn2(t−2)(nv2−v1 ∨ 1)τ4.

Substituting the foregoing inequality to ??, we have

∑
(i,j)∈An,2

Cov

{( ∑
α1∈A(i,j)

n,v1

ξ
(i,j)
α1(A1,B1)

)∣∣∣∣ ∑
α2∈A(i,j)

n,v2

ξ
(i,j)
α2(A2,B2)

∣∣∣∣,
( ∑
α′1∈A

(i,j)
n,v1

ξ
(i,j)
α′1(A1,B1)

)∣∣∣∣ ∑
α′2∈A

(i,j)
n,v2

ξ
(i,j)
α′2(A2,B2)

∣∣∣∣
}

6 Cn2 max{v1,v2}−2τ4. (A.19)

By ??????, we complete the proof.

A.3 Proof of ??

?? follows from a similar argument as that in the proof of ?? and the following lemma.
Let G̃f,` = {(A,B) ∈ Gf,` : GA,B is strongly connected.} Now, as the function g does not
depend on X, we set Am = ∅ in the following lemma. With a slight abuse of notation,
For j = 1, 2 and for Bm ⊂ [k]2, let Gm be the graph generated by Bm and let vm be the
number of nodes of Gm, and we write Bm ∈ G if Gm ∈ G.

Lemma A.2. Let Bm ∈ G̃f,d ∪ Gf,d+1 for m = 1, 2. Let (i, j), (i′, j′) ∈ An,2, and let

αm ∈ A(i,j)
n,vm , α′m ∈ A

(i′,j′)
n,vm for m = 1, 2. Let s = |{α1} ∩ {α2}| and t = |{α′1} ∩ {α′2}|. For

m = 1, 2, let γm indicate that Bm ∈ G̃f,d ∪ G̃f,d+1. Then

Cov
{
η

(i,j)
α1(B1)η

(i,j)
α2(B2), η

(i′,j′)
α′1(B1)η

(i′,j′)
α′2(B2)

}
= 0 (A.20)

for |{α1, α2} ∩ {α′1, α′2}| < v1 + v2 + γ1 + γ2 − (s+ t).

Proof. The proof is similar to that of ??.
Let V0, V

′
0 , V1, V

′
1 , V2, V

′
2 be defined as in ??. Note that if GB has isolated nodes, then

ηα(B) = 0 for all α ∈ An,vB , where vB is the number of nodes of the graph generated by
the index set B. If v1 + v2 = s+ t, then it follows that {α1} = {α2} and {α′1} = {α′2}. If

|{α1} ∩ {α′1}| < 2, then η(i,j)
α1(B1)η

(i,j)
α2(B2) and η(i′,j′)

α′1(B1)η
(i′,j′)
α′2(B2) are independent, which further

implies that ?? holds.
Now we consider the case where v1+v2 > s+t. If |{α1, α2}∩{α′1, α′2}| < v1+v2−(s+t),

then following the same argument as that leading to ??, we have ?? holds.
If G1 is connected and |{α1, α2}∩{α′1, α′2}| = v1 +v2− (s+ t), then either the following

two conditions holds: (a) there exists r ∈ V ′2 \ ({α1} ∪ {α2} ∪ V ′0 ∪ V ′1) or (b) V0 ∩ V ′0 = ∅.
If (a) holds, then following a similar argument as before, we have ?? holds. Now we
consider that the case where (b) holds. Let H1 = {(p, q) : p ∈ V0, q ∈ V1} and

F1 = σ(Yp,q, Y
′
p,q, : An,2 \H1).

EJP 0 (2021), paper 0.
Page 26/??

http://www.imstat.org/ejp/

https://doi.org/10.1214/YY-TN
http://www.imstat.org/ejp/


Generalized U -statistics

By orthogonality, we have E{η(i,j)
α1(B1)|F1} = 0.

Note that ηα2(B2), ηα′1(B1), ηα′2(B2) ∈ F1, we have

E
{
η

(i,j)
α1(B1)η

(i,j)
α2(B2)

}
= E

{
η

(i,j)
α2(B2)E

{
η

(i,j)
α1(B1)

∣∣∣ F1

}}
= 0,

Cov
{
η

(i,j)
α1(B1)η

(i,j)
α2(B2), η

(i′,j′)
α′1(B1)η

(i′,j′)
α′2(B2)

}
= E

{
E
{
η

(i,j)
α1(B1)η

(i,j)
α2(B2)η

(i′,j′)
α′1(B1)η

(i′,j′)
α′2(B2)

∣∣∣ F1

}
= E

{
η

(i,j)
α2(B2)η

(i′,j′)
α′1(B1)η

(i′,j′)
α′2(B2)E

{
η

(i,j)
α1(B1)

∣∣∣ F1

}}
= 0.

This proves ?? for the case where |{α1, α2} ∩ {α′1, α′2}| = v1 + v2 − (s+ t).
Now, we further assume that γ1 = γ2 = 1. If G1 or G2 is a graph containing one

single edge, then the proof is even simpler. Without loss of generality, we now assume
that G(r)

m is connected for every r ∈ [n] for m = 1, 2. We then prove that ?? holds when
|{α1, α2} ∩ {α′1, α′2}| = v1 + v2 − (s + t) + 1. Under this condition, additional to (a) and
(b), there is still another event that may happen: (c) there exists r ∈ [n] such that
{r} = V0 ∩ V ′0 . As the cases (a) and (b) have been discussed, we only need to prove that
?? holds under (c).

As {i, j} ⊂ V0, we have s > 2, and V0 \ {r} is not empty. Let

F2 = σ{Yp,q, Y ′p,q : p ∈ V1 ∪ V2 ∪ V ′1 ∪ V ′2 , q ∈ V1 ∪ V2 ∪ V ′1 ∪ V ′2 ∪ {r}}.

Then, conditional on F2, we have η
(i,j)
α1(B1)η

(i,j)
α2(B2) and η

(i′,j′)
α′1(B1)η

(i′,j′)
α′2(B2) are conditionally

independent. Hence,

Cov
{
η

(i,j)
α1(B1)η

(i,j)
α2(B2), η

(i′,j′)
α′1(B1)η

(i′,j′)
α′2(B2)

}
= Cov

{
E{η(i,j)

α1(B1)η
(i,j)
α2(B2)|F2},E{η(i′,j′)

α′1(B1)η
(i′,j′)
α′2(B2)|F2}

}
.

Letting

F3 = σ{Yp,q, Yp,q : p ∈ V0 \ {r}, q ∈ V2 ∪ {r}}.

Now, if G(r)
1 is connected for every r ∈ [n], there is at least one edge in G1 connecting

V0 \ {r} and V1, and thus

E{η(i,j)
α1(B1)η

(i,j)
α2(B2)|F2 ∨ F3} = η

(i,j)
α2(B2)E{η

(i,j)
α1(B1)|F2 ∨ F3} = 0,

where the last equality follows from orthogonality. Noting that F2 ⊂ F3, thenE{η(i,j)
α1(B1)η

(i,j)
α2(B2)|F2} =

0 and thus ?? holds.
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